0-homogeneous effect algebras

被引:0
作者
Gejza Jenča
机构
[1] Slovak University of Technology,Department of Mathematics and Descriptive Geometry, Faculty of Civil Engineering
来源
Soft Computing | 2010年 / 14卷
关键词
Effect algebra; Homogeneous effect algebra; Riesz decomposition property;
D O I
暂无
中图分类号
学科分类号
摘要
In the present paper, we introduce a proper superclass of homogeneous effect algebras. We call this superclass as 0-homogeneous effect algebras. We prove that in every 0-homogeneous effect algebra, the set of all sharp elements forms a subalgebra. Every chain-complete 0-homogeneous effect algebra is homogeneous.
引用
收藏
页码:1111 / 1116
页数:5
相关论文
共 19 条
[11]  
Jenča G(1994)D-posets Math Slovaca 44 21-34
[12]  
Jenča G(1986)Interpretation of AF J Funct Anal 65 15-53
[13]  
Jenča G(2000)*-algebras in Lukasziewicz sentential calculus Int J Theor Phys 39 231-237
[14]  
Riečanová Z(undefined)A generalization of blocks for D-lattices and lattice effect algebras undefined undefined undefined-undefined
[15]  
Kôpka F(undefined)undefined undefined undefined undefined-undefined
[16]  
Kôpka F(undefined)undefined undefined undefined undefined-undefined
[17]  
Chovanec F(undefined)undefined undefined undefined undefined-undefined
[18]  
Mundici D(undefined)undefined undefined undefined undefined-undefined
[19]  
Riečanová Z(undefined)undefined undefined undefined undefined-undefined