0-homogeneous effect algebras

被引:0
作者
Gejza Jenča
机构
[1] Slovak University of Technology,Department of Mathematics and Descriptive Geometry, Faculty of Civil Engineering
来源
Soft Computing | 2010年 / 14卷
关键词
Effect algebra; Homogeneous effect algebra; Riesz decomposition property;
D O I
暂无
中图分类号
学科分类号
摘要
In the present paper, we introduce a proper superclass of homogeneous effect algebras. We call this superclass as 0-homogeneous effect algebras. We prove that in every 0-homogeneous effect algebra, the set of all sharp elements forms a subalgebra. Every chain-complete 0-homogeneous effect algebra is homogeneous.
引用
收藏
页码:1111 / 1116
页数:5
相关论文
共 19 条
[1]  
Bennett M(1997)Interval and scale effect algebras Adv Appl Math 19 200-215
[2]  
Foulis D(1959)Algebraic analysis of many-valued logics Trans Am Math Soc 88 467-490
[3]  
Chang C(1997)Boolean D-posets Tatra Mt Math Publ 10 183-197
[4]  
Chovanec F(1994)Effect algebras and unsharp quantum logics Found Phys 24 1325-1346
[5]  
Kôpka F(1989)Toward a formal language for unsharp properties Found Phys 19 931-945
[6]  
Foulis D(1998)S-dominating effect algebras Int J Theor Phys 37 915-923
[7]  
Bennett M(2001)Blocks of homogeneous effect algebras Bull Aust Math Soc 64 81-98
[8]  
Giuntini R(2007)The block structure of complete lattice ordered effect algebras J Aust Mathe Soc 83 181-216
[9]  
Greuling H(1999)On sharp elements in lattice ordered effect algebras BUSEFAL 80 24-29
[10]  
Gudder S(1992)D-posets of fuzzy sets Tatra Mt Math Publ 1 83-87