On the equation f‴ + f f″ + λ(1 - F′ 2) = 0 with λ ≤ -1/2 arising in boundary layer theory

被引:0
作者
Yang G.C. [1 ]
机构
[1] Department of Computation Science, Box 9007, Chengdu University of Information Technology
关键词
Boundary value problems; Fixed points; Positive solutions;
D O I
10.1007/BF02831954
中图分类号
学科分类号
摘要
For any fixed λ ≤ -1/2, there exists f(η) ∈ C 1[0, +∞) which satisfies the following nonlinear boundary value problem f‴ + f f″ + λ(1 - f′2) = 0 a.e. in (0, +∞), f(0) = 0, f′(0) = 0, f′(+∞) = 1, which arises in boundary layer theory in fluid mechanics. © 2006 Korean Socity for Computational & Applied Mathematics and Korean SIGCAM.
引用
收藏
页码:479 / 483
页数:4
相关论文
共 9 条
[1]  
Agarwal R. P.(2002)Singular integral equations arising in Homann flow Dynamics of Continuous, Discrete and Impulsive Systems 9 481-488
[2]  
O’Regan D.(1931)Some approximate solutions of the boundary layer equations Phiols. Mag. 12 865-896
[3]  
Falkner V. M.(1999)Singular nonlinear boundary value problems arising in boundary layer theory J. Math. Anal. Appl. 233 246-256
[4]  
Skan S. W.(2003)Existence of solutions to the third-order nonlinear differential equations arising in boundary layer theory Applied Math. Lett. 16 827-832
[5]  
Wang J. Y.(2004) + Applied Math. Lett. 17 1261-1265
[6]  
Gao W. J.(undefined) + λ(1 - f’ undefined undefined undefined-undefined
[7]  
Zhang Z. X.(undefined)) = 0 undefined undefined undefined-undefined
[8]  
Yang G. C.(undefined) ε (-1/2, 0) undefined undefined undefined-undefined
[9]  
Yang G. C.(undefined)undefined undefined undefined undefined-undefined