Bach-Flat Kähler Surfaces

被引:0
作者
Claude LeBrun
机构
[1] Stony Brook University,
来源
The Journal of Geometric Analysis | 2020年 / 30卷
关键词
Riemannian 4-manifold; Bach tensor; Kähler metric; Weyl curvature; Einstein metric; Scalar curvature;
D O I
暂无
中图分类号
学科分类号
摘要
A Riemannian metric on a compact 4-manifold is said to be Bach-flat if it is a critical point for the L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document}-norm of the Weyl curvature. When the Riemannian 4-manifold in question is a Kähler surface, we provide a rough classification of solutions, followed by detailed results regarding each case in the classification. The most mysterious case prominently involves 3-dimensional CR manifolds.
引用
收藏
页码:2491 / 2514
页数:23
相关论文
共 50 条
[41]   Compact conformally Kähler Einstein-Weyl manifolds [J].
Włodzimierz Jelonek .
Annals of Global Analysis and Geometry, 2013, 43 :19-29
[42]   Extremal Almost-Kähler Metrics and Seiberg–Witten Theory [J].
Chanyoung Sung .
Annals of Global Analysis and Geometry, 2002, 22 :155-166
[43]   The complex Monge–Ampère equation on compact Kähler manifolds [J].
Xiuxiong Chen ;
Weiyong He .
Mathematische Annalen, 2012, 354 :1583-1600
[44]   Almost Kähler metrics of negative scalar curvature on symplectic manifolds [J].
Jongsu Kim .
Mathematische Zeitschrift, 2009, 262
[45]   Convergence of Lagrangian mean curvature flow in Kähler–Einstein manifolds [J].
Haozhao Li .
Mathematische Zeitschrift, 2012, 271 :313-342
[46]   Kähler Metrics on the Projective Bundle of a Holomorphic Finsler Vector Bundle [J].
Kun Wang ;
Chun Ping Zhong .
Acta Mathematica Sinica, English Series, 2020, 36 :1279-1291
[47]   Modified Extremal Kähler Metrics and Multiplier Hermitian-Einstein Metrics [J].
Nakagawa, Yasuhiro ;
Nakamura, Satoshi .
JOURNAL OF GEOMETRIC ANALYSIS, 2025, 35 (04)
[48]   Self-dual almost-Kähler four-manifolds [J].
Kim, Inyoung .
ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2024, 65 (04)
[49]   A general inequality for warped product CR-submanifolds of K?hler manifolds [J].
Mustafa, Abdulqader ;
Ozel, Cenap ;
Linker, Patrick ;
Sati, Monika ;
Pigazzini, Alexander .
HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2023, 52 (01) :1-16
[50]   4-dimensional anti-Kähler manifolds and Weyl curvature [J].
Jaeman Kim .
Czechoslovak Mathematical Journal, 2006, 56 :267-271