Bach-Flat Kähler Surfaces

被引:0
作者
Claude LeBrun
机构
[1] Stony Brook University,
来源
The Journal of Geometric Analysis | 2020年 / 30卷
关键词
Riemannian 4-manifold; Bach tensor; Kähler metric; Weyl curvature; Einstein metric; Scalar curvature;
D O I
暂无
中图分类号
学科分类号
摘要
A Riemannian metric on a compact 4-manifold is said to be Bach-flat if it is a critical point for the L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document}-norm of the Weyl curvature. When the Riemannian 4-manifold in question is a Kähler surface, we provide a rough classification of solutions, followed by detailed results regarding each case in the classification. The most mysterious case prominently involves 3-dimensional CR manifolds.
引用
收藏
页码:2491 / 2514
页数:23
相关论文
共 50 条
[31]   Special Kähler–Ricci potentials and Ricci solitons [J].
Gideon Maschler .
Annals of Global Analysis and Geometry, 2008, 34 :367-380
[32]   A generalized Wintgen inequality in quaternion Kähler geometry [J].
Siddiqi, Mohd. Danish ;
Siddiqui, Aliya Naaz ;
Ahmad, Kamran .
INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2024, 21 (11)
[33]   Collapsing immortal Kähler-Ricci flows [J].
Hein, Hans-Joachim ;
Lee, Man-Chun ;
Tosatti, Valentino .
FORUM OF MATHEMATICS PI, 2025, 13
[34]   Moment Maps, Scalar Curvature and Quantization of Kähler Manifolds [J].
Claudio Arezzo ;
Andrea Loi .
Communications in Mathematical Physics, 2004, 246 :543-559
[35]   Generalized almost-Kähler-Ricci solitons ☆ [J].
Albanese, Michael ;
Barbaro, Giuseppe ;
Lejmi, Mehdi .
DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2024, 97
[36]   Kähler-Einstein metrics with positive scalar curvature [J].
Gang Tian .
Inventiones mathematicae, 1997, 130 :1-37
[37]   The Riemannian and symplectic geometry of the space of generalized Kähler structures [J].
Apostolov, Vestislav ;
Streets, Jeffrey ;
Ustinovskiy, Yury .
COMMENTARII MATHEMATICI HELVETICI, 2025, 100 (01) :147-223
[38]   Scalar Curvature Functions of Almost-Kähler Metrics [J].
Jongsu Kim ;
Chanyoung Sung .
The Journal of Geometric Analysis, 2016, 26 :2711-2728
[39]   Weighted K-stability and coercivity with applications to extremal Kähler and Sasaki metrics [J].
Apostolov, Vestislav ;
Jubert, Simon ;
Lahdili, Abdellah .
GEOMETRY & TOPOLOGY, 2023, 27 (08) :3229-+
[40]   On positive quaternionic Kähler manifolds with certain symmetry rank [J].
Jin Hong Kim .
Israel Journal of Mathematics, 2009, 172 :157-169