Bach-Flat Kähler Surfaces

被引:0
作者
Claude LeBrun
机构
[1] Stony Brook University,
来源
The Journal of Geometric Analysis | 2020年 / 30卷
关键词
Riemannian 4-manifold; Bach tensor; Kähler metric; Weyl curvature; Einstein metric; Scalar curvature;
D O I
暂无
中图分类号
学科分类号
摘要
A Riemannian metric on a compact 4-manifold is said to be Bach-flat if it is a critical point for the L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document}-norm of the Weyl curvature. When the Riemannian 4-manifold in question is a Kähler surface, we provide a rough classification of solutions, followed by detailed results regarding each case in the classification. The most mysterious case prominently involves 3-dimensional CR manifolds.
引用
收藏
页码:2491 / 2514
页数:23
相关论文
共 50 条
[21]   Conification of Kähler and Hyper-Kähler Manifolds [J].
D. V. Alekseevsky ;
V. Cortés ;
T. Mohaupt .
Communications in Mathematical Physics, 2013, 324 :637-655
[22]   Mabuchi Kähler solitons versus extremal Kähler metrics and beyond [J].
Apostolov, Vestislav ;
Lahdili, Abdellah ;
Nitta, Yasufumi .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2025, 57 (03) :692-710
[23]   The Dynamics of the Energy of a Kähler Class [J].
Santiago R. Simanca ;
Luisa D. Stelling .
Communications in Mathematical Physics, 2005, 255 :363-389
[24]   A note on almost kähler manifolds [J].
Domenico Catalano ;
Filip Defever ;
Ryszard Deszcz ;
Marian Hotloś ;
Zbigniew Olszak .
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 1999, 69 :59-65
[25]   Twins in Kähler and Sasaki geometry ☆ [J].
Boyer, Charles P. ;
Huang, Hongnian ;
Legendre, Eveline ;
Tonnesen-Friedman, Christina W. .
JOURNAL OF GEOMETRY AND PHYSICS, 2025, 216
[26]   L°° ESTIMATES FOR K ÄHLER-RICCI FLOW ON KÄHLER-EINSTEIN FANO MANIFOLDS: A NEW DERIVATION [J].
Jian, Wangjian ;
Shi, Yalong .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2024, 152 (03) :1279-1286
[27]   The energy of a Kähler class on admissible manifolds [J].
Santiago R. Simanca ;
Christina Tønnesen-Friedman .
Mathematische Annalen, 2011, 351 :805-834
[28]   Special representatives of complexified Kähler classes [J].
Scarpa, Carlo ;
Stoppa, Jacopo .
SELECTA MATHEMATICA-NEW SERIES, 2024, 30 (04)
[29]   Mass, Kähler manifolds, and symplectic geometry [J].
Claude LeBrun .
Annals of Global Analysis and Geometry, 2019, 56 :97-112
[30]   On semisymmetric para-Kähler manifolds [J].
F. Defever ;
R. Deszcz ;
L. Verstraelen .
Acta Mathematica Hungarica, 1997, 74 :7-17