Bach-Flat Kähler Surfaces

被引:0
作者
Claude LeBrun
机构
[1] Stony Brook University,
来源
The Journal of Geometric Analysis | 2020年 / 30卷
关键词
Riemannian 4-manifold; Bach tensor; Kähler metric; Weyl curvature; Einstein metric; Scalar curvature;
D O I
暂无
中图分类号
学科分类号
摘要
A Riemannian metric on a compact 4-manifold is said to be Bach-flat if it is a critical point for the L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document}-norm of the Weyl curvature. When the Riemannian 4-manifold in question is a Kähler surface, we provide a rough classification of solutions, followed by detailed results regarding each case in the classification. The most mysterious case prominently involves 3-dimensional CR manifolds.
引用
收藏
页码:2491 / 2514
页数:23
相关论文
共 50 条
  • [21] Conification of Kähler and Hyper-Kähler Manifolds
    D. V. Alekseevsky
    V. Cortés
    T. Mohaupt
    Communications in Mathematical Physics, 2013, 324 : 637 - 655
  • [22] Mabuchi Kähler solitons versus extremal Kähler metrics and beyond
    Apostolov, Vestislav
    Lahdili, Abdellah
    Nitta, Yasufumi
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2025, 57 (03) : 692 - 710
  • [23] The Dynamics of the Energy of a Kähler Class
    Santiago R. Simanca
    Luisa D. Stelling
    Communications in Mathematical Physics, 2005, 255 : 363 - 389
  • [24] A note on almost kähler manifolds
    Domenico Catalano
    Filip Defever
    Ryszard Deszcz
    Marian Hotloś
    Zbigniew Olszak
    Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 1999, 69 : 59 - 65
  • [25] L°° ESTIMATES FOR K ÄHLER-RICCI FLOW ON KÄHLER-EINSTEIN FANO MANIFOLDS: A NEW DERIVATION
    Jian, Wangjian
    Shi, Yalong
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2024, 152 (03) : 1279 - 1286
  • [26] The energy of a Kähler class on admissible manifolds
    Santiago R. Simanca
    Christina Tønnesen-Friedman
    Mathematische Annalen, 2011, 351 : 805 - 834
  • [27] Special representatives of complexified Kähler classes
    Scarpa, Carlo
    Stoppa, Jacopo
    SELECTA MATHEMATICA-NEW SERIES, 2024, 30 (04):
  • [28] Mass, Kähler manifolds, and symplectic geometry
    Claude LeBrun
    Annals of Global Analysis and Geometry, 2019, 56 : 97 - 112
  • [29] On semisymmetric para-Kähler manifolds
    F. Defever
    R. Deszcz
    L. Verstraelen
    Acta Mathematica Hungarica, 1997, 74 : 7 - 17
  • [30] Special Kähler–Ricci potentials and Ricci solitons
    Gideon Maschler
    Annals of Global Analysis and Geometry, 2008, 34 : 367 - 380