Bach-Flat Kähler Surfaces

被引:0
|
作者
Claude LeBrun
机构
[1] Stony Brook University,
来源
The Journal of Geometric Analysis | 2020年 / 30卷
关键词
Riemannian 4-manifold; Bach tensor; Kähler metric; Weyl curvature; Einstein metric; Scalar curvature;
D O I
暂无
中图分类号
学科分类号
摘要
A Riemannian metric on a compact 4-manifold is said to be Bach-flat if it is a critical point for the L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document}-norm of the Weyl curvature. When the Riemannian 4-manifold in question is a Kähler surface, we provide a rough classification of solutions, followed by detailed results regarding each case in the classification. The most mysterious case prominently involves 3-dimensional CR manifolds.
引用
收藏
页码:2491 / 2514
页数:23
相关论文
共 50 条
  • [11] Conformally Einstein and Bach-flat four-dimensional homogeneous manifolds
    Calvino-Louzao, E.
    Garcia-Martinez, X.
    Garcia-Rio, E.
    Gutierrez-Rodriguez, I.
    Vazquez-Lorenzo, R.
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2019, 130 : 347 - 374
  • [12] Affine Surfaces Which are Kähler, Para-Kähler, or Nilpotent Kähler
    E. Calviño-Louzao
    E. García-Río
    P. Gilkey
    I. Gutiérrez-Rodríguez
    R. Vázquez-Lorenzo
    Results in Mathematics, 2018, 73
  • [13] Ricci-flat Kähler metrics on crepant resolutions of Kähler cones
    Craig van Coevering
    Mathematische Annalen, 2010, 347 : 581 - 611
  • [14] Ricci flow on Kähler-Einstein surfaces
    X.X. Chen
    G. Tian
    Inventiones mathematicae, 2002, 147 : 487 - 544
  • [15] Weyl Curvature, Del Pezzo Surfaces, and Almost-Kähler Geometry
    Claude LeBrun
    The Journal of Geometric Analysis, 2015, 25 : 1744 - 1772
  • [16] Examples of asymptotically conical Ricci-flat Kähler manifolds
    Craig van Coevering
    Mathematische Zeitschrift, 2011, 267 : 465 - 496
  • [17] The Kähler–Ricci flow on surfaces of positive Kodaira dimension
    Jian Song
    Gang Tian
    Inventiones mathematicae, 2007, 170 : 609 - 653
  • [18] Almost Bach Solitons on coKähler Manifolds
    Mandal, Tarak
    De, Uday Chand
    Sarkar, Avijit
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2025, 22 (01)
  • [19] Almost Bach Solitons on coKähler ManifoldsAlmost Bach Solitons on coKähler ManifoldsT. Mandal et al.
    Tarak Mandal
    Uday Chand De
    Avijit Sarkar
    Mediterranean Journal of Mathematics, 2025, 22 (1)
  • [20] Indefinite Kähler-Einstein Metrics on Compact Complex Surfaces
    Jimmy Petean
    Communications in Mathematical Physics, 1997, 189 : 227 - 235