Binary Systems Around a Black Hole

被引:0
作者
Eduardo Guéron
Patricio S. Letelier
机构
[1] Massachusetts Institute of Technology,Department of Earth Atmospheric and Planetary Sciences
[2] Universidade Estadual de Campinas,Departamento de Matemàtica Aplicada
[3] Universidade Estadual de Campinas,IMECC
来源
General Relativity and Gravitation | 2004年 / 36卷
关键词
Self-gravity; geodesics; interacting particles;
D O I
暂无
中图分类号
学科分类号
摘要
We present a novel method to study interacting orbits in a fixed mean gravitational field associated with a solution of the Einstein field equations. The idea is to consider the Newton gravity among the orbiting particles in a geometry given by the main source. For this purpose, the motion equations are obtained in two different but equivalent ways. The particles can either be considered as a zeroth order (static) perturbation to the given metric or as an external Newtonian force in the geodesic equations. After obtaining the motion equations we perform simulations of two and three interacting particles moving around a black hole, i.e., in a Schwarzschild geometry. We also compare with the equivalent Newtonian problem and note differences in the stability, e.g., binary systems are found only in the general relativistic approach.
引用
收藏
页码:2107 / 2122
页数:15
相关论文
共 29 条
[1]  
Melia F.(2001)undefined Ann. Rev. Ast. Astrophys. 39 309-85
[2]  
Falcke H.(2000)undefined Phys. Rev. D 62 401-undefined
[3]  
Marronetti P.(1975)undefined Astroph. J. 197 725-undefined
[4]  
Huq M.(1992)undefined Phys. Rev. D 45 1017-undefined
[5]  
Laguna P.(2002)undefined Phys. Rev. D 65 064005-undefined
[6]  
Matzner R. A.(1980)undefined Ast. Astroph. 88 23-undefined
[7]  
Shoemaker D.(1995)undefined Astroph. J. 446 75-undefined
[8]  
Spyrou N.(1999)undefined Ast. Astroph. 343 325-undefined
[9]  
Damour T.(1990)undefined Icarus 88 266-undefined
[10]  
Soffel M.(1991)undefined Nuovo Cim. 106 545-undefined