Harmonious Coloring on Corona Product of Complete Graphs

被引:0
作者
Francisco Antonio Muntaner-Batle
J. Vernold Vivin
M. Venkatachalam
机构
[1] University of Newcastle,Graph Theory and Applications Research Group, Faculty of Engineering and Built Environment, School of Electrical Engineering and Computer Science
[2] University College of Engineering (Anna University Constituent College),Department of Mathematics
[3] RVS Educational Trust’s Group of Institutions,Department of Mathematics, RVS Faculty of Engineering
来源
National Academy Science Letters | 2014年 / 37卷
关键词
Harmonious coloring; Corona product; Pigeonhole principle;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we find the harmonious chromatic number of the corona product of any graph G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document} of order l\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l$$\end{document} with the complete graph Kn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_n$$\end{document} for l≤n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l \le n$$\end{document}. As a consequence of this work, we also obtain the harmonious chromatic number of t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t$$\end{document} copies of Kn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_n$$\end{document} for t≤n+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t \le n+1$$\end{document}.
引用
收藏
页码:461 / 465
页数:4
相关论文
共 27 条
[11]  
Harary F(1993)On the harmonious chromatic number of P( J Syst Sci Math Sci 13 218-223
[12]  
Plantholt M(1993)), P( Discret Math 118 165-172
[13]  
Hopcroft J(1995)) and P( J Math Res Expos 15 51-56
[14]  
Krishnamoorthy MS(1997)) Discret Math 172 93-101
[15]  
Edwards KJ(1998)Estimates of the harmonious chromatic numbers of some classes of graphs Syst Sci Math Sci 11 26-31
[16]  
Edwards KJ(1970)The harmonious chromatic number of a complete binary and trinary tree Aequ Math 4 322-325
[17]  
Edwards KJ(undefined)The harmonious chromatic number of a complete undefined undefined undefined-undefined
[18]  
Edwards KJ(undefined)-ary tree undefined undefined undefined-undefined
[19]  
McDiarmid CJH(undefined)The exact value of the harmonious chromatic number of a complete binary tree undefined undefined undefined-undefined
[20]  
Mammana MF(undefined)Exact value of the harmonious chromatic number of a complete trinary tree undefined undefined undefined-undefined