Harmonious Coloring on Corona Product of Complete Graphs

被引:0
作者
Francisco Antonio Muntaner-Batle
J. Vernold Vivin
M. Venkatachalam
机构
[1] University of Newcastle,Graph Theory and Applications Research Group, Faculty of Engineering and Built Environment, School of Electrical Engineering and Computer Science
[2] University College of Engineering (Anna University Constituent College),Department of Mathematics
[3] RVS Educational Trust’s Group of Institutions,Department of Mathematics, RVS Faculty of Engineering
来源
National Academy Science Letters | 2014年 / 37卷
关键词
Harmonious coloring; Corona product; Pigeonhole principle;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we find the harmonious chromatic number of the corona product of any graph G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G$$\end{document} of order l\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l$$\end{document} with the complete graph Kn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_n$$\end{document} for l≤n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$l \le n$$\end{document}. As a consequence of this work, we also obtain the harmonious chromatic number of t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t$$\end{document} copies of Kn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_n$$\end{document} for t≤n+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t \le n+1$$\end{document}.
引用
收藏
页码:461 / 465
页数:4
相关论文
共 27 条
[1]  
Aflaki A(2012)On harmonious colouring of trees Electron J Comb 19 1-9
[2]  
Akbari S(1982)The line distinguishing chromatic number of a graph Ars Comb 14 241-252
[3]  
Edwards KJ(1995)On harmonious colouring of collection of graphs J Gr Theory 20 241-245
[4]  
Eskandani DS(1983)Graphs with the line distinguishing chromatic number equal to the usual one Util Math 23 201-207
[5]  
Jamaali M(1983)On the harmonious colouring of graphs SIAM J Algebra Discret Math 4 306-311
[6]  
Ravanbod H(1995)The harmonious chromatic number of almost all trees Comb Probab Comput 4 31-46
[7]  
Frank O(1996)The harmonious chromatic number of bounded degree trees Comb Probab Comput 5 15-28
[8]  
Harary F(1999)The harmonious chromatic number of complete Discret Math 203 83-99
[9]  
Plantholt M(1995)-ary trees Discret Appl Math 57 133-144
[10]  
Georges JP(2003)The complexity of harmonious colouring for trees Util Math 64 25-32