Differentiability points of functions in weighted Sobolev spaces

被引:0
|
作者
A. I. Tyulenev
机构
[1] Moscow Institute of Physics and Technology (State University),
来源
Proceedings of the Steklov Institute of Mathematics | 2013年 / 283卷
关键词
Sobolev Space; STEKLOV Institute; Weighted Sobolev Space; Minkowski Inequality; Taylor Formula;
D O I
暂无
中图分类号
学科分类号
摘要
We consider weighted Sobolev spaces Wpl, l ∈ ℕ, with weighted Lp-norm of higher derivatives on an n-dimensional cube-type domain. The weight γ depends on the distance to an (n − d)-dimensional face E of the cube. We establish the property of uniform Lp-differentiability of functions in these spaces on the face E of an appropriate dimension. This property consists in the possibility of Lp-approximation of the values of a function near E by a polynomial of degree l − 1.
引用
收藏
页码:250 / 259
页数:9
相关论文
共 50 条
  • [11] On weighted critical imbeddings of Sobolev spaces
    D. E. Edmunds
    H. Hudzik
    M. Krbec
    Mathematische Zeitschrift, 2011, 268 : 585 - 592
  • [12] On weighted critical imbeddings of Sobolev spaces
    Edmunds, D. E.
    Hudzik, H.
    Krbec, M.
    MATHEMATISCHE ZEITSCHRIFT, 2011, 268 (1-2) : 585 - 592
  • [13] Generalized Lebesgue points for Sobolev functions
    Nijjwal Karak
    Czechoslovak Mathematical Journal, 2017, 67 : 143 - 150
  • [14] Generalized Lebesgue points for Sobolev functions
    Karak, Nijjwal
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2017, 67 (01) : 143 - 150
  • [15] On Γ-convergence of integral functionals defined on various weighted Sobolev spaces
    O. A. Rudakova
    Ukrainian Mathematical Journal, 2009, 61 : 121 - 139
  • [16] WEIGHTED SOBOLEV SPACES, CAPACITIES AND EXCEPTIONAL SETS
    Tarasova, I. M.
    Shlyk, V. A.
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2020, 17 : 1552 - 1570
  • [17] Boundedness of integral operators in weighted Sobolev spaces
    Zarhin, Yu. G.
    IZVESTIYA MATHEMATICS, 2014, 78 (04) : 854 - 854
  • [18] On the Boundedness of the Schrodinger Operator in Weighted Sobolev Spaces
    Kussainova, L. K.
    Myrzagaliyeva, A. Kh.
    Sultanaev, Ya. T.
    MATHEMATICAL NOTES, 2016, 99 (5-6) : 948 - 953
  • [19] Quasicontinuity on Weighted Sobolev Spaces with Variable Exponent
    Pinhong LONG
    Huili HAN
    Journal of Mathematical Research with Applications, 2016, 36 (06) : 659 - 664
  • [20] Weighted Sobolev spaces and regularity for polyhedral domains
    Ammann, Bernd
    Nistor, Victor
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2007, 196 (37-40) : 3650 - 3659