Review of Recent Developments in the Random-Field Ising Model

被引:0
作者
Nikolaos G. Fytas
Víctor Martín-Mayor
Marco Picco
Nicolas Sourlas
机构
[1] Coventry University,Applied Mathematics Research Centre
[2] Universidad Complutense,Departamento de Física Téorica I
[3] Instituto de Biocomputacíon y Física de Sistemas Complejos (BIFI),undefined
[4] Sorbonne Universités,undefined
[5] Université Pierre et Marie Curie - Paris VI,undefined
[6] Laboratoire de Physique Théorique et Hautes Energies,undefined
[7] Laboratoire de Physique Théorique de l’ENS,undefined
[8] École Normale Supérieure,undefined
[9] PSL Research University,undefined
[10] Sorbonne Universités,undefined
[11] UPMC Univ. Paris 06,undefined
[12] CNRS,undefined
来源
Journal of Statistical Physics | 2018年 / 172卷
关键词
Phase transitions; Disordered systems; Random field Ising model;
D O I
暂无
中图分类号
学科分类号
摘要
A lot of progress has been made recently in our understanding of the random-field Ising model thanks to large-scale numerical simulations. In particular, it has been shown that, contrary to previous statements: the critical exponents for different probability distributions of the random fields and for diluted antiferromagnets in a field are the same. Therefore, critical universality, which is a perturbative renormalization-group prediction, holds beyond the validity regime of perturbation theory. Most notably, dimensional reduction is restored at five dimensions, i.e., the exponents of the random-field Ising model at five dimensions and those of the pure Ising ferromagnet at three dimensions are the same.
引用
收藏
页码:665 / 672
页数:7
相关论文
共 43 条
[1]  
Aharony A(1976)Lowering of dimensionality in phase transitions with random fields Phys. Rev. Lett. 37 1364-undefined
[2]  
Imry Y(1977)On the lowering of dimensionality in phase transitions with random fields J. Phys. A 10 L257-undefined
[3]  
Ma S-K(1979)Random magnetic fields, supersymmetry and negative dimensions Phys. Rev. Lett. 43 744-undefined
[4]  
Young AP(1987)Lower critical dimensions of the random-field Ising Model Phys. Rev. Lett. 59 1829-undefined
[5]  
Parisi G(2013)Universality in the three-dimensional random-field Ising model Phys. Rev. Lett. 110 227201-undefined
[6]  
Sourlas N(2016)Efficient numerical methods for the random-field Ising model: finite-size scaling, reweighting extrapolation, and computation of response functions Phys. Rev. E 93 063308-undefined
[7]  
Bricmont J(2015)Diluted antiferromagnetic 3D Ising model in a field Europhys. Lett. 109 37001-undefined
[8]  
Kupiainen A(2016)Phase transitions in disordered systems: the example of the random-field Ising model in four dimensions Phys. Rev. Lett. 116 227201-undefined
[9]  
Fytas NG(2017)Restoration of dimensional reduction in the random-field Ising model at five dimensions Phys. Rev. E 95 042117-undefined
[10]  
Martín-Mayor V(2011)Supersymmetry and its spontaneous breaking in the random field Ising model Phys. Rev. Lett. 107 041601-undefined