SegFast-V2: Semantic image segmentation with less parameters in deep learning for autonomous driving

被引:0
|
作者
Swarnendu Ghosh
Anisha Pal
Shourya Jaiswal
K. C. Santosh
Nibaran Das
Mita Nasipuri
机构
[1] Jadavpur University,
[2] Manipal Institute of Technology,undefined
[3] University of South Dakota,undefined
来源
International Journal of Machine Learning and Cybernetics | 2019年 / 10卷
关键词
Compressed encoder–decoder model; Semantic image segmentation; Deep learning;
D O I
暂无
中图分类号
学科分类号
摘要
Semantic image segmentation can be used in various driving applications, such as automatic braking, road sign alerts, park assists, and pedestrian warnings. More often, AI applications, such as autonomous modules are available in expensive vehicles. It would be appreciated if such facilities can be made available in the lower end of the price spectrum. Existing methodologies, come with a costly overhead with large number of parameters and need of costly hardware. Within this scope, the key contribution of this work is to promote the possibility of compact semantic image segmentation so that it can be extended to deploy AI based solutions to less expensive vehicles. While developing cheap and fast models one must also not compromise the factor of reliability and robustness. The proposed work is primarily based on our previous model named “SegFast”, and is aimed to perform thorough analysis across a multitude of datasets. Beside “spark” modules and depth-wise separable transposed convolutions, kernel factorization is implemented to further reduce the number of parameters. The effect of MobileNet as an encoder to our model has also been analyzed. The proposed method shows a promising decrease in the number of parameters and significant gain in terms of runtime even on a single CPU environment. Despite all those speedups, the proposed approach performs at a similar level to many popular but heavier networks, such as SegNet, UNet, PSPNet, and FCN.
引用
收藏
页码:3145 / 3154
页数:9
相关论文
共 50 条
  • [1] SegFast-V2: Semantic image segmentation with less parameters in deep learning for autonomous driving
    Ghosh, Swarnendu
    Pal, Anisha
    Jaiswal, Shourya
    Santosh, K. C.
    Das, Nibaran
    Nasipuri, Mita
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2019, 10 (11) : 3145 - 3154
  • [2] Real-Time Semantic Image Segmentation with Deep Learning for Autonomous Driving: A Survey
    Papadeas, Ilias
    Tsochatzidis, Lazaros
    Amanatiadis, Angelos
    Pratikakis, Ioannis
    APPLIED SCIENCES-BASEL, 2021, 11 (19):
  • [3] Semantic Image Segmentation for Autonomous Driving Using Fully Convolutional Networks
    Kaymak, Cagri
    Ucar, Ayegul
    2019 INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND DATA PROCESSING (IDAP 2019), 2019,
  • [4] Multimodal Deep Learning in Semantic Image Segmentation: A Review
    Raman, Vishal
    Kumari, Madhu
    PROCEEDINGS OF 2018 INTERNATIONAL CONFERENCE ON CLOUD COMPUTING AND INTERNET OF THINGS (CCIOT 2018), 2018, : 7 - 11
  • [5] Semantic image segmentation algorithm in a deep learning computer network
    He, Defu
    Xie, Chao
    MULTIMEDIA SYSTEMS, 2022, 28 (06) : 2065 - 2077
  • [6] Semantic image segmentation algorithm in a deep learning computer network
    Defu He
    Chao Xie
    Multimedia Systems, 2022, 28 : 2065 - 2077
  • [7] Review of Image Semantic Segmentation Based on Deep Learning
    Tian X.
    Wang L.
    Ding Q.
    Ruan Jian Xue Bao/Journal of Software, 2019, 30 (02): : 440 - 468
  • [8] Image Semantic Segmentation for Autonomous Driving Based on Improved U-Net
    Sun, Chuanlong
    Zhao, Hong
    Mu, Liang
    Xu, Fuliang
    Lu, Laiwei
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2023, 136 (01): : 787 - 801
  • [9] Semantic image segmentation network based on deep learning
    Chen, Bo
    Zhang, Jiahao
    Zhou, Jianbang
    Chen, Zhong
    Yang, Tian
    Zhang, Yanna
    MIPPR 2019: AUTOMATIC TARGET RECOGNITION AND NAVIGATION, 2020, 11429
  • [10] Deep learning-based image recognition for autonomous driving
    Fujiyoshi, Hironobu
    Hirakawa, Tsubasa
    Yamashita, Takayoshi
    IATSS RESEARCH, 2019, 43 (04) : 244 - 252