Design and Performance Projection of Virtually Doped Dual Gate Junctionless IMOS

被引:0
作者
Dasari Srikanya
Nawaz Shafi
Chitrakant Sahu
机构
[1] Malaviya National Institiute of Technology Jaipur,Department of Electronics and Communication Engineering
[2] Vellore Institute of Technology,School of Electronics Engineering (SENSE)
来源
Silicon | 2023年 / 15卷
关键词
Dual gate; Junctionless; Charge plasma; IMOS; Breakdown; Sub-threshold swing;
D O I
暂无
中图分类号
学科分类号
摘要
This research investigates the virtually doped dual gate junctionless impact ionization MOS (DG-JL-IMOS). Virtually doped source and drain regions are realized through the genesis of charge plasma using different work-functions for their electrodes, easing the process complexity with simultaneous reduction of process-induced variations to implant uniform doping. The proposed DG-JL-IMOS device exhibits two order increase in ION/IOFF\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I_{ON}/I_{OFF}$$\end{document} ratio at a lower source bias of -4.5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-4.5$$\end{document}V with respect to -5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-5$$\end{document}V required for a single gate JIMOS device. This work further examines the breakdown behavior of the proposed DG-JL-IMOS by analyzing carrier density distribution, impact ionization, and electric field profile through extensive TCAD simulations. The proposed device exhibits a super steep sub-threshold swing (SS) of 0.6 mV/dec over several orders of drain current, which is not achieved by any other counterpart steep-slope technologies. The effect of interface traps on the proposed DG-JL-IMOS is studied and investigated for hysteresis in the transfer characteristics. Furthermore, analog parameters such as transconductance (gm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g_{m}$$\end{document}), unity gain cutoff-frequency (fT\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f_{T}$$\end{document}), and current gain of the proposed device are evaluated and compared with conventional DG-IMOS. It is observed that the proposed device shows a 2.6×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2.6\times $$\end{document} increase in ION\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I_{ON}$$\end{document}, 1.7×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1.7\times $$\end{document} higher gm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g_{m}$$\end{document}, 1.6×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1.6\times $$\end{document} higher fT\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f_{T}$$\end{document}, and a 5 dB improvement in current gain compared to conventional DG-IMOS. The proposed DG-JL-IMOS device breakdowns at a voltage, (VBD\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V_{BD}$$\end{document}) of -4.21\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-4.21$$\end{document}V, whereas DG-IMOS breakdowns at -4.75\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-4.75$$\end{document}V. The enhanced performance metrics of DG-JL-IMOS elucidate its suitability for high-speed and high-performance analog applications.
引用
收藏
页码:6061 / 6072
页数:11
相关论文
共 94 条
  • [21] Kahng A(2005)undefined IEEE Trans Nanotechnol 4 322-undefined
  • [22] Rodgers M(2017)undefined IEEE Trans Electron Devices 64 3007-undefined
  • [23] Zorian Y(2017)undefined IEEE Trans Electron Devices 64 1561-undefined
  • [24] Schaller R(2017)undefined IEEE Trans Electron Devices 64 3-undefined
  • [25] Frank D(2019)undefined IEEE Trans Electron Devices 66 868-undefined
  • [26] Dennard R(2021)undefined Microelectron Reliab 122 114166-undefined
  • [27] Nowak E(2022)undefined Microelectron Reliab 137 114780-undefined
  • [28] Solomon P(2017)undefined IEEE Trans Device Mater Reliab 17 245-undefined
  • [29] Taur Y(undefined)undefined undefined undefined undefined-undefined
  • [30] Wong HSP(undefined)undefined undefined undefined undefined-undefined