G2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_2$$\end{document}-Instantons on the Spinor Bundle of the 3-Sphere

被引:0
作者
Jakob Stein
Matt Turner
机构
[1] University College London,
[2] University of Bath,undefined
关键词
G2 manifolds; Gauge theory; Co-homogeneity one; Instantons; 53C07; 58D27; 58E15;
D O I
10.1007/s12220-024-01573-1
中图分类号
学科分类号
摘要
We classify G2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_2$$\end{document}-instantons admitting SU(2)3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$SU (2)^3$$\end{document}-symmetries, and construct a new family of examples on the spinor bundle of the 3-sphere, equipped with the asymptotically conical, co-homogeneity one G2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_2$$\end{document}-metric of Bryant–Salamon. We also show that outside of the SU(2)3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$SU (2)^3$$\end{document}-invariant examples, any other G2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_2$$\end{document}-instanton on this metric with the same asymptotic behaviour must have obstructed deformations.
引用
收藏
相关论文
共 35 条
  • [11] Corrigan E(2009) unification of the deformed and resolved conifolds Geom. Topol. 13 1583-1655
  • [12] Devchand C(2018)Deformations of nearly Kähler instantons Math. Ann. 371 961-1011
  • [13] Fairlie DB(2013)Instantons on the exceptional holonomy manifolds of Bryant and Salamon Ann. Glob. Anal. Geom. 44 369-390
  • [14] Nuyts J(1990)Infinitely many new families of complete cohomogeneity one Invent. Math. 102 267-303
  • [15] Cvetič M(2023)-manifolds: J. Geom. Anal. 33 121-268
  • [16] Gibbons GW(2000) analogues of the Taub-NUT and Eguchi-Hanson spaces Ann. Math. 151 193-893
  • [17] Lü H(2017)Desingularization of Comm. Anal. Geom. 25 847-19
  • [18] Pope CN(1958) manifolds with isolated conical singularities Nagoya Math. J. 13 1-396
  • [19] Charbonneau B(1984)-invariant Nuclear Phys. B 236 381-undefined
  • [20] Harland D(undefined)-instantons undefined undefined undefined-undefined