G2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_2$$\end{document}-Instantons on the Spinor Bundle of the 3-Sphere

被引:0
作者
Jakob Stein
Matt Turner
机构
[1] University College London,
[2] University of Bath,undefined
关键词
G2 manifolds; Gauge theory; Co-homogeneity one; Instantons; 53C07; 58D27; 58E15;
D O I
10.1007/s12220-024-01573-1
中图分类号
学科分类号
摘要
We classify G2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_2$$\end{document}-instantons admitting SU(2)3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$SU (2)^3$$\end{document}-symmetries, and construct a new family of examples on the spinor bundle of the 3-sphere, equipped with the asymptotically conical, co-homogeneity one G2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_2$$\end{document}-metric of Bryant–Salamon. We also show that outside of the SU(2)3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$SU (2)^3$$\end{document}-invariant examples, any other G2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_2$$\end{document}-instanton on this metric with the same asymptotic behaviour must have obstructed deformations.
引用
收藏
相关论文
共 35 条
  • [1] Atiyah M(2003)M theory dynamics on a manifold of G(2) holonomy Adv. Theoret. Math. Phys. 6 1-106
  • [2] Witten E(1955)Sur les groupes d’holonomie homogène des variétés à connexion affine et des variétés riemanniennes Bull. Soc. Math. France 83 279-330
  • [3] Berger M(2001)Gauge theory at large Nuclear Phys. B 611 179-204
  • [4] Brandhuber A(2013) and new Sibirsk. Mat. Zh. 54 551-562
  • [5] Gomis J(1989) holonomy metrics Duke Math. J. 58 829-850
  • [6] Gubser SS(1983)On a new family of complete Riemannian metrics on Nuclear Phys. B 214 452-464
  • [7] Gukov S(2002) with holonomy group Phys. Lett. B 534 172-180
  • [8] Bogoyavlenskaya OA(2016)On the construction of some complete metrics with exceptional holonomy Commun. Math. Phys. 348 959-990
  • [9] Bryant RL(2014)First-order equations for gauge fields in spaces of dimension greater than four J. Geom. Phys. 82 84-97
  • [10] Salamon SM(2021)A J. Eur. Math. Soc. 23 2153-2220