Properties for the Perron complement of three known subclasses of H-matrices

被引:0
作者
Leilei Wang
Jianzhou Liu
Shan Chu
机构
[1] Xiangtan University,Department of Mathematics and Computational Science
来源
Journal of Inequalities and Applications | / 2015卷
关键词
diagonally dominant matrix; -matrix; the Perron complement; nonnegative irreducible matrix; spectral radius; 15A47; 15A48; 65U05; 65J10;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we analyze the diagonally dominant degree for the Perron complement upon several diagonally dominant cases by using the entries and spectral radius of the original matrix. At the same time, we obtain closure properties for the Perron complement of several diagonally dominant matrices.
引用
收藏
相关论文
共 22 条
  • [1] Meyer CD(1989)Uncoupling the Perron eigenvector problem Linear Algebra Appl. 114/115 69-94
  • [2] Kirkland SJ(2001)A divide and conquer approach to computing the mean first passage matrix for Markov chains via Perron complement reductions Numer. Linear Algebra Appl. 8 287-295
  • [3] Neumann M(2002)Perron complement and Perron root Linear Algebra Appl. 341 239-248
  • [4] Xu JH(2010)Some closer bounds of Perron root basing on generalized Perron complement J. Comput. Appl. Math. 235 315-324
  • [5] Lu LZ(2003)On the stability of the computation of the stationary probabilities of Markov chains using Perron complements Numer. Linear Algebra Appl. 10 603-618
  • [6] Yang ZM(2000)Inverses of Perron complements of inverse Linear Algebra Appl. 313 163-171
  • [7] Neumann M(2001)-matrices Linear Algebra Appl. 327 85-94
  • [8] Xu JH(2011)On Perron complements of totally nonnegative matrices Linear Algebra Appl. 434 2081-2088
  • [9] Neumann M(2011)On Perron complements of inverse Linear Algebra Appl. 435 3085-3100
  • [10] Fallat SM(2006)-matrices J. Math. Anal. Appl. 313 581-586