A Beilinson-Bernstein Theorem for Analytic Quantum Groups. II\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^*$$\end{document}

被引:0
作者
Nicolas Dupré
机构
[1] Universität Duisburg-Essen,
[2] Fakultät für Mathematik,undefined
[3] Thea-Leymann-Straße 9,undefined
[4] D-45127,undefined
关键词
quantum groups; noncommutative geometry; -adic representation theory;
D O I
10.1134/S2070046621020011
中图分类号
学科分类号
摘要
引用
收藏
页码:83 / 116
页数:33
相关论文
共 23 条
[1]  
Andersen H. H.(1991)Representations of quantum algebras Invent. Math 104 1-59
[2]  
Polo P.(2013)On irreducible representations of compact Ann. Math. 178 453-557
[3]  
Wen K. X.(2006)-adic analytic groups Adv. Math. 203 408-429
[4]  
Ardakov K.(2017)Quantum flag varieties, equivariant quantum Ann. Fac. Sci. Toulouse Math. (6) 26 49-126
[5]  
Wadsley S.(1996)-modules, and localization of quantum groups Ann. Sci. École Norm. Sup. (4) 29 185-272
[6]  
Backelin E.(2019)Non-Archimedean analytic geometry as relative algebraic geometry Math. Proc. Cambridge Philos. Soc. 167 389-416
[7]  
Kremnizer K.(1995)-modules arithmétiques. I. Opérateurs différentiels de niveau fini Glasgow Math. J. 37 83-98
[8]  
Ben-Bassat O.(2019)Completed tensor products and a global approach to J. Algebra 537 98-146
[9]  
Kremnizer K.(2021)-adic analytic differential operators p-Adic Numbers Ultrametric Anal. Appl. 13 44-82
[10]  
Berthelot P.(1961)On reducibility of ultrametric almost periodic linear representations Inst. Hautes Études Sci. Publ. Math. 11 185-235