Selecting single cell clustering parameter values using subsampling-based robustness metrics

被引:0
作者
Ryan B. Patterson-Cross
Ariel J. Levine
Vilas Menon
机构
[1] National Institutes of Health,Spinal Circuits and Plasticity Unit, National Institute of Neurological Disorders and Stroke
[2] Columbia University,Department of Neurology, Center for Translational and Computational Neuroimmunology
来源
BMC Bioinformatics | / 22卷
关键词
Single cell RNAseq; Parameter selection; Clustering; Resolution;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 100 条
[1]  
Macosko EZ(2015)Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets Cell 161 1202-1214
[2]  
Basu A(2015)Brain structure. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq Science (New York, NY) 347 1138-1142
[3]  
Satija R(2016)Adult mouse cortical cell taxonomy revealed by single cell transcriptomics Nat Neurosci 19 335-346
[4]  
Nemesh J(2016)Comprehensive classification of retinal bipolar neurons by single-cell transcriptomics Cell 166 1308-23.e30
[5]  
Shekhar K(2017)Massively parallel single-nucleus RNA-seq with DroNc-seq Nat Methods 14 955-958
[6]  
Goldman M(2018)Integrative single-cell analysis of transcriptional and epigenetic states in the human adult brain Nat Biotechnol 36 70-80
[7]  
Zeisel A(2018)Massively parallel single nucleus transcriptional profiling defines spinal cord neurons and their activity during behavior Cell Rep 22 2216-2225
[8]  
Munoz-Manchado AB(2018)Integrating single-cell transcriptomic data across different conditions, technologies, and species Nat Biotechnol 36 411-420
[9]  
Codeluppi S(2019)Comprehensive integration of single-cell data Cell 177 1888-902.e21
[10]  
Lonnerberg P(2018)SCANPY: large-scale single-cell gene expression data analysis Genome Biol 19 15-1058