Exact Traveling-Wave Solutions to Bidirectional Wave Equations

被引:0
作者
Min Chen
机构
来源
International Journal of Theoretical Physics | 1998年 / 37卷
关键词
Field Theory; Exact Solution; Elementary Particle; Quantum Field Theory; Wave Equation;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we present several systematicways to find exact traveling-wave solutions of thesystems\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\eta _t + u_x + \left( {u\eta } \right)_x + au_{xxx} - b\eta _{xxt} = 0$$ \end{document}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$u_t + \eta _x + uu_x + c\eta _{xxx} + du_{xxt} = 0$$ \end{document}where a, b, c, and d are real constants. These systems,derived by Bona, Saut and Toland for describingsmall-amplitude long waves in a water channel, areformally equivalent to the classical Boussinesq systemand correct through first order with regard to asmall parameter characterizing the typicalamplitude-todepth ratio. Exact solutions for a largeclass of systems are presented. The existence of theexact traveling-wave solutions is in general extremely helpful inthe theoretical and numerical study of thesystems.
引用
收藏
页码:1547 / 1567
页数:20
相关论文
共 20 条
[1]  
Benjamin T. B.(1972)Model equations for long waves in nonlinear dispersive systems Philosophical Transaction of the Royal London A 272 47-78
[2]  
Bona J. L.(1976)A model for the two-way propagation of water waves in a channel Mathematical Proceedings of the Cambridge Philosophical Society 79 167-182
[3]  
Mahony J. J.(1871)Théorie de l'intumescence liquide appelée onde solitaire ou de translation se propageant dans un canal rectangulaire Comptes Rendus de l'Acadmie de Sciences 72 755-759
[4]  
Bona J. L.(1985)An existence theory for water waves, and Boussinesq and Kortewegde Vries scaling limits Communication s in Partial Differential Equations 10 787-1003
[5]  
Smith R.(1972)A ninth-order solution for the solitary wave Journal of Fluid Mechanics 53 257-271
[6]  
Boussinesq J.(1981)An exact solution of the wave equation Journal of the Physical Society of Japan 50 361-362
[7]  
Craig W.(1992) − SIAM Journal of Mathematics and Analysis 23 1141-1166
[8]  
Fenton J. D.(1982)Existence and nonexistence of solitary wave solutions to higher-order model evolution equations Journal of the Physical Society of Japan 51 2391-2392
[9]  
Kano K.(1977)An exact solution of the classical Boussinesq equation SIAM Journal of Applied Mathematics 33 133-160
[10]  
Nakayama T.(1988)Finite amplitude instabilities of partial difference equations Physica D 30 1-27