Generalized Dirac Equation for a particle in a gravitational field

被引:0
作者
Daniel Chemisana
Jaume Giné
Jaime Madrid
机构
[1] Universitat de Lleida,Applied Physics Section of Environmental Science Department
[2] Universitat de Lleida,Departament de Matemàtica
来源
General Relativity and Gravitation | 2021年 / 53卷
关键词
Generalized Dirac equation; Generalized uncertainty principle; Modified Schwarzschild metrics; Relativistic quantum mechanics;
D O I
暂无
中图分类号
学科分类号
摘要
The existence of a minimal observable length modifies the Heisenberg’s uncertainty principle at Plank scales and leads to some modifications of the Dirac equation. Here, we consider the generalized uncertainty principle (GUP) theory in order to deduce a generalized Dirac equation and solve its eigenvalue problem for a particle within a gravitational field created by a central mass. We use two different approximations to tackle the problem, based on the Schwarzschild and a modified Schwarzschild metrics.
引用
收藏
相关论文
共 59 条
  • [1] Adler RJ(2001)The generalized uncertainty principle and black hole remnants Gen. Relativ. Gravit. 33 2101-2108
  • [2] Chen P(1999)On gravity and the uncertainty principle Mod. Phys. Lett. A 14 1371-42
  • [3] Santiago DI(2003)Minimal length uncertainty relation and the hydrogen spectrum Phys. Lett. B 572 37-88
  • [4] Adler RJ(1987)Superstring collisions at Planckian energies Phys. Lett. B 197 81-1045
  • [5] Santiago DI(2008)Dirac-type equations in a gravitational field with vector wave function Found. Phys. 38 1020-7696
  • [6] Akhoury R(1999)Minimal length uncertainty relation and the hydrogen atom J. Phys. A 32 7691-1160
  • [7] Yao YP(2003)Generalized uncertainty principle and quantum electrodynamics Gen. Relativ. Gravit 35 1153-22
  • [8] Amati D(2000)Generalized uncertainty principle from quantum geometry Int. J. Theor. Phys. 39 15-293
  • [9] Ciafaloni M(1997)String theory, scale relativity and the generalized uncertainty principle Found. Phys. Lett. 10 273-412
  • [10] Veneziano G(2010)Discreteness of space from GUP II. Relativistic wave equations Phys. Lett. B 690 407-499