The Semi Heyting–Brouwer Logic

被引:0
作者
Juan Manuel Cornejo
机构
[1] Universidad Nacional del Sur,Departamento de Matemática, INMABB
来源
Studia Logica | 2015年 / 103卷
关键词
Semi Heyting–Brouwer logic; Semi-Heyting algebras; Heyting–Brouwer logic; Heyting algebras;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we introduce a logic that we name semi Heyting–Brouwer logic, SHB\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{SHB}}$$\end{document}, in such a way that the variety of double semi-Heyting algebras is its algebraic counterpart. We prove that, up to equivalences by translations, the Heyting–Brouwer logic HB\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{HB}}$$\end{document} is an axiomatic extension of SHB\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{SHB}}$$\end{document} and that the propositional calculi of intuitionistic logic I\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{I}}$$\end{document} and semi-intuitionistic logic SI\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{SI}}$$\end{document} turn out to be fragments of SHB\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{SHB}}$$\end{document}.
引用
收藏
页码:853 / 875
页数:22
相关论文
共 24 条
  • [1] Abad M.(2013)Semi-Heyting algebras term-equivalent to Gödel algebras Order 2 625-642
  • [2] Cornejo J.M.(1980)Subdirectly irreducible double Heyting algebras Algebra Universalis 10 220-224
  • [3] DiazVarela J.P.(2011)Semi-intuitionistic logic Studia Logica 98 9-25
  • [4] Beazer R.(2014)On some semi-intuitionistics logics Studia Logica 254 151-185
  • [5] Cornejo J.M.(2001)Subtractive logic Theoretical Computer Science 14 529-570
  • [6] Cornejo J.M.(2004)A formulae-as-types interpretation of subtractive logic Journal of Logic and Computation 18 471-474
  • [7] Viglizzo I.(1977)A remark on Gentzen’s calculus of sequents Notre Dame Journal of Formal Logic 74 13-97
  • [8] Crolard T.(2003)A survey of abstract algebraic logic Studia Logica 20 233-260
  • [9] Crolard T.(2010)Combining derivations and refutations for cut-free completeness in bi-intuitionistic logic Journal of Logic and Computation 10 189-194
  • [10] Czermak J.(1980)A subdirectly irreducible double Heyting algebra which is not simple Algebra Universalis 72 25-101