Integration with respect to Hölder rough paths of order greater than 1/4: an approach via fractional calculus

被引:0
作者
Yu Ito
机构
[1] Kyoto Sangyo University,Department of Mathematics, Faculty of Science
来源
Collectanea Mathematica | 2022年 / 73卷
关键词
Stieltjes integral; Fractional derivative; Rough path; Fractional Brownian motion; 26A33; 26A42; 60H05;
D O I
暂无
中图分类号
学科分类号
摘要
On the basis of fractional calculus, we introduce an integral of controlled paths with respect to Hölder rough paths of order β∈(1/4,1/3]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta \in (1/4,1/3]$$\end{document}. Our definition of the integral is given explicitly in terms of Lebesgue integrals for fractional derivatives, without using any arguments from discrete approximation. We demonstrate that for suitable classes of β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta$$\end{document}-Hölder rough paths and controlled paths, our definition of the integral is consistent with the usual definition given by the limit of the compensated Riemann–Stieltjes sum. The results of this paper also provide an approach to the integral of 1-forms against geometric β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta$$\end{document}-Hölder rough paths.
引用
收藏
页码:13 / 42
页数:29
相关论文
共 21 条
[1]  
Besalú M(2014)Delay equations with non-negativity constraints driven by a Hölder continuous function of order Potential Anal. 41 117-141
[2]  
Márquez-Carreras D(2011)Estimates for the solution to stochastic differential equations driven by a fractional Brownian motion with Hurst parameter Stoch. Dyn. 11 243-263
[3]  
Rovira C(2002)Stochastic analysis, rough path analysis and fractional Brownian motions Probab. Theory Relat. Fields 122 108-140
[4]  
Besalú M(2004)Controlling rough paths J. Funct. Anal. 216 86-140
[5]  
Nualart D(2010)Ramification of rough paths J. Differ. Equ. 248 693-721
[6]  
Coutin L(2009)Rough path analysis via fractional calculus Trans. Am. Math. Soc. 361 2689-2718
[7]  
Qian Z(2015)Integrals along rough paths via fractional calculus Potential Anal. 42 155-174
[8]  
Gubinelli M(2017)Extension theorem for rough paths via fractional calculus J. Math. Soc. Jpn. 69 893-912
[9]  
Gubinelli M(2017)Integration of controlled rough paths via fractional calculus Forum Math. 29 1163-1175
[10]  
Hu Y(2019)A fractional calculus approach to rough integration Kyoto J. Math. 59 553-573