Linear Maps Which are Anti-derivable at Zero

被引:0
作者
Doha Adel Abulhamil
Fatmah B. Jamjoom
Antonio M. Peralta
机构
[1] King Abdulaziz University,Mathematics Departments, College of Sciences
[2] Universidad de Granada,Departamento de Análisis Matemático, Facultad de Ciencias
来源
Bulletin of the Malaysian Mathematical Sciences Society | 2020年 / 43卷
关键词
-algebra; Banach bimodule; Derivation; Anti-derivation; Maps anti-derivable at zero; Maps ; -anti-derivable at zero; Primary 46L05; 46L57; 47B47; Secondary 15A86;
D O I
暂无
中图分类号
学科分类号
摘要
Let T:A→X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T:A\rightarrow X$$\end{document} be a bounded linear operator, where A is a C∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {C}^*$$\end{document}-algebra, and X denotes an essential Banach A-bimodule. We prove that the following statements are equivalent: (a)T is anti-derivable at zero (i.e., ab=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ab =0$$\end{document} in A implies T(b)a+bT(a)=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T(b) a + b T(a)=0$$\end{document});(b)There exist an anti-derivation d:A→X∗∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d:A\rightarrow X^{**}$$\end{document} and an element ξ∈X∗∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\xi \in X^{**}$$\end{document} satisfying ξa=aξ,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\xi a = a \xi ,$$\end{document}ξ[a,b]=0,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\xi [a,b]=0,$$\end{document}T(ab)=bT(a)+T(b)a-bξa,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T(a b) = b T(a) + T(b) a - b \xi a,$$\end{document} and T(a)=d(a)+ξa,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T(a) = d(a) + \xi a,$$\end{document} for all a,b∈A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a,b\in A$$\end{document}.
引用
收藏
页码:4315 / 4334
页数:19
相关论文
共 113 条
  • [1] Alaminos J(2009)Maps preserving zero products Stud. Math. 193 131-159
  • [2] Bresar M(2003)Biseparating maps between operator algebras J. Math. Anal. Appl. 282 48-55
  • [3] Extremera J(1951)The adjoint of a bilinear operation Proc. Am. Math. Soc. 2 839-848
  • [4] Villena A(2016)A survey on local and 2-local derivations on Am. Math. Soc. 672 73-126
  • [5] Araujo J(2012)- and von Neumann algebras, Contemporary Mathematics Linear Multilinear Algebra 60 763-768
  • [6] Jarosz K(2019)Multiplication algebra and maps determined by zero products Quaest. Math. 42 151-164
  • [7] Arens R(2014)Linear maps between Commun. Algebra 42 1276-1286
  • [8] Ayupov S(2008)-algebras that are J. Math. Anal. Appl. 348 220-233
  • [9] Kudaybergenov K(2014)-homomorphisms at a fixed point Bull. Lond. Math. Soc. 46 709-724
  • [10] Peralta AM(2003)Local triple derivations on Stud. Math. 155 77-94