On the Gauss-Newton method

被引:7
|
作者
Argyros I.K. [1 ]
Hilout S. [1 ]
机构
[1] Laboratoire de Mathématiques et Applications, Poitiers University, Futuroscope Chasseneuil Cedex 86962, Bd. Pierre et Marie Curie
关键词
Fréchet-derivative; Gauss-Newton method; More-Penrose pseudo-inverse; Semilocal convergence;
D O I
10.1007/s12190-010-0377-8
中图分类号
学科分类号
摘要
We provide a new semilocal convergence analysis of the Gauss-Newton method (GNM) for solving nonlinear equation in the Euclidean space. Using a combination of center-Lipschitz, Lipschitz conditions, and our new idea of recurrent functions, we provide under the same or weaker hypotheses than before (Ben-Israel, J. Math. Anal. Appl. 15:243-252, 1966; Chen and Nashed, Numer. Math. 66:235-257, 1993; Deuflhard and Heindl, SIAM J. Numer. Anal. 16:1-10, 1979; Guo, J. Comput. Math. 25:231-242, 2007; Häuler, Numer. Math. 48:119-125, 1986; Hu et al., J. Comput. Appl. Math. 219:110-122, 2008; Kantorovich and Akilov, Functional Analysis in Normed Spaces, Pergamon, Oxford, 1982), a finer convergence analysis. The results can be extended in case outer or generalized inverses are used. Numerical examples are also provided to show that our results apply, where others fail (Ben-Israel, J. Math. Anal. Appl. 15:243-252, 1966; Chen and Nashed, Numer. Math. 66:235-257, 1993; Deuflhard and Heindl, SIAM J. Numer. Anal. 16:1-10, 1979; Guo, J. Comput. Math. 25:231-242, 2007; Häuler, Numer. Math. 48:119-125, 1986; Hu et al., J. Comput. Appl. Math. 219:110-122, 2008; Kantorovich and Akilov, Functional Analysis in Normed Spaces, Pergamon, Oxford, 1982). © 2010 Korean Society for Computational and Applied Mathematics.
引用
收藏
页码:537 / 550
页数:13
相关论文
共 50 条
  • [41] The minimal-norm Gauss-Newton method and some of its regularized variants
    Pes F.
    Rodriguez G.
    Electronic Transactions on Numerical Analysis, 2020, 53 : 459 - 480
  • [42] Gauss-Newton method for solving linear inverse problems with neural network coders
    Scherzer, Otmar
    Hofmann, Bernd
    Nashed, Zuhair
    SAMPLING THEORY SIGNAL PROCESSING AND DATA ANALYSIS, 2023, 21 (02):
  • [43] Flexibility-based structural damage identification using Gauss-Newton method
    Chen, B.
    Nagarajaiah, S.
    SADHANA-ACADEMY PROCEEDINGS IN ENGINEERING SCIENCES, 2013, 38 (04): : 557 - 569
  • [44] Gauss-Newton methods for a class of nonsmooth optimization problems
    李冲
    王兴华
    ProgressinNaturalScience, 2000, (06) : 72 - 75
  • [45] Gauss-Newton methods for a class of nonsmooth optimization problems
    Li, C
    Wang, XH
    PROGRESS IN NATURAL SCIENCE, 2000, 10 (06) : 470 - 473
  • [46] Gauss-Newton Optimization for Phase Recovery From the Bispectrum
    Herring, James Lincoln
    Nagy, James
    Ruthotto, Lars
    IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, 2020, 6 (06) : 235 - 247
  • [47] A Gauss-Newton iteration for Total Least Squares problems
    Fasino, Dario
    Fazzi, Antonio
    BIT NUMERICAL MATHEMATICS, 2018, 58 (02) : 281 - 299
  • [48] Extending the applicability of the Gauss-Newton method under average Lipschitz-type conditions
    Argyros, Ioannis K.
    Hilout, Said
    NUMERICAL ALGORITHMS, 2011, 58 (01) : 23 - 52
  • [49] Iteratively Regularized Gauss-Newton Method for Operator Equations with Normally Solvable Derivative at the Solution
    Bakushinskii, A. B.
    Kokurin, M. Yu.
    RUSSIAN MATHEMATICS, 2016, 60 (08) : 1 - 8
  • [50] Fast and stable modification of the Gauss-Newton method for low-rank signal estimation
    Zvonarev, Nikita
    Golyandina, Nina
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2022, 29 (04)