On the Gauss-Newton method

被引:7
|
作者
Argyros I.K. [1 ]
Hilout S. [1 ]
机构
[1] Laboratoire de Mathématiques et Applications, Poitiers University, Futuroscope Chasseneuil Cedex 86962, Bd. Pierre et Marie Curie
关键词
Fréchet-derivative; Gauss-Newton method; More-Penrose pseudo-inverse; Semilocal convergence;
D O I
10.1007/s12190-010-0377-8
中图分类号
学科分类号
摘要
We provide a new semilocal convergence analysis of the Gauss-Newton method (GNM) for solving nonlinear equation in the Euclidean space. Using a combination of center-Lipschitz, Lipschitz conditions, and our new idea of recurrent functions, we provide under the same or weaker hypotheses than before (Ben-Israel, J. Math. Anal. Appl. 15:243-252, 1966; Chen and Nashed, Numer. Math. 66:235-257, 1993; Deuflhard and Heindl, SIAM J. Numer. Anal. 16:1-10, 1979; Guo, J. Comput. Math. 25:231-242, 2007; Häuler, Numer. Math. 48:119-125, 1986; Hu et al., J. Comput. Appl. Math. 219:110-122, 2008; Kantorovich and Akilov, Functional Analysis in Normed Spaces, Pergamon, Oxford, 1982), a finer convergence analysis. The results can be extended in case outer or generalized inverses are used. Numerical examples are also provided to show that our results apply, where others fail (Ben-Israel, J. Math. Anal. Appl. 15:243-252, 1966; Chen and Nashed, Numer. Math. 66:235-257, 1993; Deuflhard and Heindl, SIAM J. Numer. Anal. 16:1-10, 1979; Guo, J. Comput. Math. 25:231-242, 2007; Häuler, Numer. Math. 48:119-125, 1986; Hu et al., J. Comput. Appl. Math. 219:110-122, 2008; Kantorovich and Akilov, Functional Analysis in Normed Spaces, Pergamon, Oxford, 1982). © 2010 Korean Society for Computational and Applied Mathematics.
引用
收藏
页码:537 / 550
页数:13
相关论文
共 50 条
  • [41] ON THE SEMILOCAL CONVERGENCE OF THE GAUSS-NEWTON METHOD USING RECURRENT FUNCTIONS
    Argyros, Ioannis K.
    Hilout, Said
    JOURNAL OF THE KOREAN SOCIETY OF MATHEMATICAL EDUCATION SERIES B-PURE AND APPLIED MATHEMATICS, 2010, 17 (04): : 307 - 319
  • [42] A Distributed Gauss-Newton Method for Power System State Estimation
    Minot, Ariana
    Lu, Yue M.
    Li, Na
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2016, 31 (05) : 3804 - 3815
  • [43] A Gauss-Newton method for blind source separation of convolutive mixtures
    Cruces, S
    Castedo, L
    PROCEEDINGS OF THE 1998 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, VOLS 1-6, 1998, : 2093 - 2096
  • [44] Extended convergence of Gauss-Newton's method and uniqueness of the solution
    Argyros, Ioannis K.
    Cho, Yeol Je
    George, Santhosh
    CARPATHIAN JOURNAL OF MATHEMATICS, 2018, 34 (02) : 135 - 142
  • [45] Enhancement of Gauss-Newton Inversion Method for Biological Tissue Imaging
    Ostadrahimi, Majid
    Mojabi, Puyan
    Zakaria, Amer
    LoVetri, Joe
    Shafai, Lotfollah
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2013, 61 (09) : 3424 - 3434
  • [46] Gauss-Newton method for image reconstruction in diffuse optical tomography
    Schweiger, M
    Arridge, SR
    Nissilä, I
    PHYSICS IN MEDICINE AND BIOLOGY, 2005, 50 (10): : 2365 - 2386
  • [47] Structured diagonal Gauss-Newton method for nonlinear least squares
    Danmalam, Kamaluddeen Umar
    Mohammad, Hassan
    Waziri, Mohammed Yusuf
    COMPUTATIONAL & APPLIED MATHEMATICS, 2022, 41 (02):
  • [48] A distributed Gauss-Newton method for distribution system state estimation
    Li, Keqiang
    Han, Xueshan
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2022, 136
  • [49] Adaptive Gauss-Newton Method for Solving Systems of Nonlinear Equations
    Yudin, N. E.
    DOKLADY MATHEMATICS, 2021, 104 (02) : 293 - 296
  • [50] An extended Gauss-Newton method for full-waveform inversion
    Gholami, Ali
    GEOPHYSICS, 2024, 89 (03) : R261 - R274