On the Gauss-Newton method

被引:7
|
作者
Argyros I.K. [1 ]
Hilout S. [1 ]
机构
[1] Laboratoire de Mathématiques et Applications, Poitiers University, Futuroscope Chasseneuil Cedex 86962, Bd. Pierre et Marie Curie
关键词
Fréchet-derivative; Gauss-Newton method; More-Penrose pseudo-inverse; Semilocal convergence;
D O I
10.1007/s12190-010-0377-8
中图分类号
学科分类号
摘要
We provide a new semilocal convergence analysis of the Gauss-Newton method (GNM) for solving nonlinear equation in the Euclidean space. Using a combination of center-Lipschitz, Lipschitz conditions, and our new idea of recurrent functions, we provide under the same or weaker hypotheses than before (Ben-Israel, J. Math. Anal. Appl. 15:243-252, 1966; Chen and Nashed, Numer. Math. 66:235-257, 1993; Deuflhard and Heindl, SIAM J. Numer. Anal. 16:1-10, 1979; Guo, J. Comput. Math. 25:231-242, 2007; Häuler, Numer. Math. 48:119-125, 1986; Hu et al., J. Comput. Appl. Math. 219:110-122, 2008; Kantorovich and Akilov, Functional Analysis in Normed Spaces, Pergamon, Oxford, 1982), a finer convergence analysis. The results can be extended in case outer or generalized inverses are used. Numerical examples are also provided to show that our results apply, where others fail (Ben-Israel, J. Math. Anal. Appl. 15:243-252, 1966; Chen and Nashed, Numer. Math. 66:235-257, 1993; Deuflhard and Heindl, SIAM J. Numer. Anal. 16:1-10, 1979; Guo, J. Comput. Math. 25:231-242, 2007; Häuler, Numer. Math. 48:119-125, 1986; Hu et al., J. Comput. Appl. Math. 219:110-122, 2008; Kantorovich and Akilov, Functional Analysis in Normed Spaces, Pergamon, Oxford, 1982). © 2010 Korean Society for Computational and Applied Mathematics.
引用
收藏
页码:537 / 550
页数:13
相关论文
共 50 条
  • [31] LOCAL CONVERGENCE OF THE GAUSS-NEWTON METHOD FOR INJECTIVE-OVERDETERMINED SYSTEMS
    Amat, Sergio
    Argyros, Ioannis Konstantinos
    Alberto Magrenan, Angel
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2014, 51 (05) : 955 - 970
  • [32] ON A DYNAMIC VARIANT OF THE ITERATIVELY REGULARIZED GAUSS-NEWTON METHOD WITH SEQUENTIAL DATA
    Chada, Neil K.
    Iglesias, Marco
    Lu, Shuai
    Werner, Frank
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2023, 45 (06) : A3020 - A3046
  • [33] A Gauss-Newton Method for the Integration of Spatial Normal Fields in Shape Space
    Jonathan Balzer
    Journal of Mathematical Imaging and Vision, 2012, 44 : 65 - 79
  • [34] On the Gauss-Newton method for l1 orthogonal distance regression
    Watson, GA
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2002, 22 (03) : 345 - 357
  • [35] Stochastic Gauss-Newton Algorithms for Online PCA
    Zhou, Siyun
    Liu, Xin
    Xu, Liwei
    JOURNAL OF SCIENTIFIC COMPUTING, 2023, 96 (03)
  • [36] A generalization of continuous regularized Gauss-Newton method for ill-posed problems
    Nair, M. Thamban
    Ravishankar, P.
    JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2011, 19 (03): : 473 - 510
  • [37] THE MINIMAL-NORM GAUSS-NEWTON METHOD AND SOME OF ITS REGULARIZED VARIANTS
    Pes, Federica
    Rodriguez, Giuseppe
    ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2020, 53 : 459 - 480
  • [38] Solar PV Power Forecasting Using Modified SVR with Gauss-Newton Method
    Pawar, Punam
    Mithulananthan, Nadarajah
    Raza, Muhammad Qamar
    2020 IEEE 2ND GLOBAL POWER, ENERGY AND COMMUNICATION CONFERENCE (IEEE GPECOM2020), 2020, : 226 - 231
  • [39] CALCULATION OF CONSTANT OUTPUT FEEDBACK MATRICES FOR POLE PLACEMENT BY A GAUSS-NEWTON METHOD
    Franke, Matthias
    Roebenack, Klaus
    CONTROL AND INTELLIGENT SYSTEMS, 2014, 42 (03) : 225 - 230
  • [40] CONVERGENCE OF THE GAUSS-NEWTON METHOD FOR CONVEX COMPOSITE OPTIMIZATION UNDER A MAJORANT CONDITION
    Ferreira, O. P.
    Goncalves, M. L. N.
    Oliveira, P. R.
    SIAM JOURNAL ON OPTIMIZATION, 2013, 23 (03) : 1757 - 1783