On the Gauss-Newton method

被引:7
|
作者
Argyros I.K. [1 ]
Hilout S. [1 ]
机构
[1] Laboratoire de Mathématiques et Applications, Poitiers University, Futuroscope Chasseneuil Cedex 86962, Bd. Pierre et Marie Curie
关键词
Fréchet-derivative; Gauss-Newton method; More-Penrose pseudo-inverse; Semilocal convergence;
D O I
10.1007/s12190-010-0377-8
中图分类号
学科分类号
摘要
We provide a new semilocal convergence analysis of the Gauss-Newton method (GNM) for solving nonlinear equation in the Euclidean space. Using a combination of center-Lipschitz, Lipschitz conditions, and our new idea of recurrent functions, we provide under the same or weaker hypotheses than before (Ben-Israel, J. Math. Anal. Appl. 15:243-252, 1966; Chen and Nashed, Numer. Math. 66:235-257, 1993; Deuflhard and Heindl, SIAM J. Numer. Anal. 16:1-10, 1979; Guo, J. Comput. Math. 25:231-242, 2007; Häuler, Numer. Math. 48:119-125, 1986; Hu et al., J. Comput. Appl. Math. 219:110-122, 2008; Kantorovich and Akilov, Functional Analysis in Normed Spaces, Pergamon, Oxford, 1982), a finer convergence analysis. The results can be extended in case outer or generalized inverses are used. Numerical examples are also provided to show that our results apply, where others fail (Ben-Israel, J. Math. Anal. Appl. 15:243-252, 1966; Chen and Nashed, Numer. Math. 66:235-257, 1993; Deuflhard and Heindl, SIAM J. Numer. Anal. 16:1-10, 1979; Guo, J. Comput. Math. 25:231-242, 2007; Häuler, Numer. Math. 48:119-125, 1986; Hu et al., J. Comput. Appl. Math. 219:110-122, 2008; Kantorovich and Akilov, Functional Analysis in Normed Spaces, Pergamon, Oxford, 1982). © 2010 Korean Society for Computational and Applied Mathematics.
引用
收藏
页码:537 / 550
页数:13
相关论文
共 50 条
  • [21] Convergence of the Gauss-Newton method for a special class of systems of equations under a majorant condition
    Goncalves, M. L. N.
    Oliveira, P. R.
    OPTIMIZATION, 2015, 64 (03) : 577 - 594
  • [22] Local convergence analysis of the Gauss-Newton method under a majorant condition
    Ferreira, O. P.
    Goncalves, M. L. N.
    Oliveira, P. R.
    JOURNAL OF COMPLEXITY, 2011, 27 (01) : 111 - 125
  • [23] A Gauss-Newton Method for the Integration of Spatial Normal Fields in Shape Space
    Balzer, Jonathan
    JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2012, 44 (01) : 65 - 79
  • [24] The Gauss-Newton method for finding singular solutions to systems of nonlinear equations
    Yerina M.Yu.
    Izmailov A.F.
    Computational Mathematics and Mathematical Physics, 2007, 47 (5) : 748 - 759
  • [25] An Efficient Implementation of the Gauss-Newton Method Via Generalized Krylov Subspaces
    Buccini, A.
    de Alba, P. Diaz
    Pes, F.
    Reichel, L.
    JOURNAL OF SCIENTIFIC COMPUTING, 2023, 97 (02)
  • [26] An Iterative Algorithm for Microwave Tomography Using Modified Gauss-Newton Method
    Kundu, A. K.
    Bandyopadhyay, B.
    Sanyal, S.
    4TH KUALA LUMPUR INTERNATIONAL CONFERENCE ON BIOMEDICAL ENGINEERING 2008, VOLS 1 AND 2, 2008, 21 (1-2): : 511 - +
  • [27] A Penalty Method Based on a Gauss-Newton Scheme for AC-OPF
    Mezghani, Ilyes
    Papavasiliou, Anthony
    Quoc Tran-Dinh
    Necoara, Ion
    2021 IEEE MADRID POWERTECH, 2021,
  • [28] The path planning of space manipulator based on Gauss-Newton iteration method
    Xie, Yaen
    Wu, Xiande
    Shi, Zhen
    Wang, Zhipeng
    Sun, Jun
    Hao, Tianwei
    ADVANCES IN MECHANICAL ENGINEERING, 2017, 9 (08) : 1 - 12
  • [29] The convergence of a smoothing damped Gauss-Newton method for nonlinear complementarity problem
    Ma, Changfeng
    Jiang, Lihua
    Wang, Desheng
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2009, 10 (04) : 2072 - 2087
  • [30] FREQUENCY DOMAIN ELASTIC WAVEFORM INVERSION USING THE GAUSS-NEWTON METHOD
    Chung, Wookeen
    Shin, Jungkyun
    Bae, Ho Seuk
    Yang, Dongwoo
    Shin, Changsoo
    JOURNAL OF SEISMIC EXPLORATION, 2012, 21 (01): : 29 - 48