On the Gauss-Newton method

被引:7
|
作者
Argyros I.K. [1 ]
Hilout S. [1 ]
机构
[1] Laboratoire de Mathématiques et Applications, Poitiers University, Futuroscope Chasseneuil Cedex 86962, Bd. Pierre et Marie Curie
关键词
Fréchet-derivative; Gauss-Newton method; More-Penrose pseudo-inverse; Semilocal convergence;
D O I
10.1007/s12190-010-0377-8
中图分类号
学科分类号
摘要
We provide a new semilocal convergence analysis of the Gauss-Newton method (GNM) for solving nonlinear equation in the Euclidean space. Using a combination of center-Lipschitz, Lipschitz conditions, and our new idea of recurrent functions, we provide under the same or weaker hypotheses than before (Ben-Israel, J. Math. Anal. Appl. 15:243-252, 1966; Chen and Nashed, Numer. Math. 66:235-257, 1993; Deuflhard and Heindl, SIAM J. Numer. Anal. 16:1-10, 1979; Guo, J. Comput. Math. 25:231-242, 2007; Häuler, Numer. Math. 48:119-125, 1986; Hu et al., J. Comput. Appl. Math. 219:110-122, 2008; Kantorovich and Akilov, Functional Analysis in Normed Spaces, Pergamon, Oxford, 1982), a finer convergence analysis. The results can be extended in case outer or generalized inverses are used. Numerical examples are also provided to show that our results apply, where others fail (Ben-Israel, J. Math. Anal. Appl. 15:243-252, 1966; Chen and Nashed, Numer. Math. 66:235-257, 1993; Deuflhard and Heindl, SIAM J. Numer. Anal. 16:1-10, 1979; Guo, J. Comput. Math. 25:231-242, 2007; Häuler, Numer. Math. 48:119-125, 1986; Hu et al., J. Comput. Appl. Math. 219:110-122, 2008; Kantorovich and Akilov, Functional Analysis in Normed Spaces, Pergamon, Oxford, 1982). © 2010 Korean Society for Computational and Applied Mathematics.
引用
收藏
页码:537 / 550
页数:13
相关论文
共 50 条
  • [21] Gauss-Newton and Inverse Gauss-Newton Methods for Coefficient Identification in Linear Elastic Systems
    David L. Russell
    Acta Applicandae Mathematicae, 2012, 118 : 221 - 235
  • [22] Gauss-Newton and Inverse Gauss-Newton Methods for Coefficient Identification in Linear Elastic Systems
    Russell, David L.
    ACTA APPLICANDAE MATHEMATICAE, 2012, 118 (01) : 221 - 235
  • [23] Newton and Gauss-Newton method in the estimation of nonlinear regression model parameters
    Silva, Edilson M.
    Fruhauf, Ariana C.
    Fernandes, Felipe A.
    Paula, Gustavo S.
    Muniz, Joel A.
    Fernandes, Tales J.
    SIGMAE, 2019, 8 (02): : 728 - 734
  • [24] On convergence rates for the iteratively regularized Gauss-Newton method
    Blaschke, B
    Neubauer, A
    Scherzer, O
    IMA JOURNAL OF NUMERICAL ANALYSIS, 1997, 17 (03) : 421 - 436
  • [25] Gauss-Newton Method for DEM Co-registration
    Wang, Kunlun
    Zhang, Tonggang
    INTERNATIONAL CONFERENCE ON INTELLIGENT EARTH OBSERVING AND APPLICATIONS 2015, 2015, 9808
  • [26] Convergence of Gauss-Newton's method and uniqueness of the solution
    Chen, JH
    Li, WG
    APPLIED MATHEMATICS AND COMPUTATION, 2005, 170 (01) : 686 - 705
  • [27] Improved Gauss-Newton method for structural evaluation of pavement
    Matsui, Kunihito
    Sato, Naotoshi
    Doboku Gakkai Rombun-Hokokushu/Proceedings of the Japan Society of Civil Engineers, 1993, (478 pt 5-21): : 141 - 144
  • [28] On convergence of the Gauss-Newton method for convex composite optimization
    Li, C
    Wang, XH
    MATHEMATICAL PROGRAMMING, 2002, 91 (02) : 349 - 356
  • [29] SHAPE OPTIMIZATION VIA A LEVELSET AND A GAUSS-NEWTON METHOD
    Fehrenbach, Jerome
    de Gournay, Friaric
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2019, 25
  • [30] THE ITERATED KALMAN FILTER UPDATE AS A GAUSS-NEWTON METHOD
    BELL, BM
    CATHEY, FW
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1993, 38 (02) : 294 - 297