On the Gauss-Newton method

被引:7
|
作者
Argyros I.K. [1 ]
Hilout S. [1 ]
机构
[1] Laboratoire de Mathématiques et Applications, Poitiers University, Futuroscope Chasseneuil Cedex 86962, Bd. Pierre et Marie Curie
关键词
Fréchet-derivative; Gauss-Newton method; More-Penrose pseudo-inverse; Semilocal convergence;
D O I
10.1007/s12190-010-0377-8
中图分类号
学科分类号
摘要
We provide a new semilocal convergence analysis of the Gauss-Newton method (GNM) for solving nonlinear equation in the Euclidean space. Using a combination of center-Lipschitz, Lipschitz conditions, and our new idea of recurrent functions, we provide under the same or weaker hypotheses than before (Ben-Israel, J. Math. Anal. Appl. 15:243-252, 1966; Chen and Nashed, Numer. Math. 66:235-257, 1993; Deuflhard and Heindl, SIAM J. Numer. Anal. 16:1-10, 1979; Guo, J. Comput. Math. 25:231-242, 2007; Häuler, Numer. Math. 48:119-125, 1986; Hu et al., J. Comput. Appl. Math. 219:110-122, 2008; Kantorovich and Akilov, Functional Analysis in Normed Spaces, Pergamon, Oxford, 1982), a finer convergence analysis. The results can be extended in case outer or generalized inverses are used. Numerical examples are also provided to show that our results apply, where others fail (Ben-Israel, J. Math. Anal. Appl. 15:243-252, 1966; Chen and Nashed, Numer. Math. 66:235-257, 1993; Deuflhard and Heindl, SIAM J. Numer. Anal. 16:1-10, 1979; Guo, J. Comput. Math. 25:231-242, 2007; Häuler, Numer. Math. 48:119-125, 1986; Hu et al., J. Comput. Appl. Math. 219:110-122, 2008; Kantorovich and Akilov, Functional Analysis in Normed Spaces, Pergamon, Oxford, 1982). © 2010 Korean Society for Computational and Applied Mathematics.
引用
收藏
页码:537 / 550
页数:13
相关论文
共 50 条
  • [11] ON SMOOTHNESS AND INVARIANCE PROPERTIES OF THE GAUSS-NEWTON METHOD
    BEYN, WJ
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 1993, 14 (5-6) : 503 - 514
  • [12] THE ITERATED KALMAN SMOOTHER AS A GAUSS-NEWTON METHOD
    BELL, BM
    SIAM JOURNAL ON OPTIMIZATION, 1994, 4 (03) : 626 - 636
  • [13] A Gauss-Newton method for convex composite optimization
    Burke, JV
    Ferris, MC
    MATHEMATICAL PROGRAMMING, 1995, 71 (02) : 179 - 194
  • [14] A GLOBALIZATION SCHEME FOR THE GENERALIZED GAUSS-NEWTON METHOD
    KNOTH, O
    NUMERISCHE MATHEMATIK, 1989, 56 (06) : 591 - 607
  • [15] A Stochastic iteratively regularized Gauss-Newton method
    Bergou, Elhoucine
    Chada, Neil K.
    Diouane, Youssef
    INVERSE PROBLEMS, 2025, 41 (01)
  • [16] Convergence analysis of a proximal Gauss-Newton method
    Salzo, Saverio
    Villa, Silvia
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2012, 53 (02) : 557 - 589
  • [17] Feasibility of Gauss-Newton method for indoor positioning
    Yan, Junlin
    Tiberius, Christian
    Bellusci, Giovanni
    Janssen, Gerard
    2008 IEEE/ION POSITION, LOCATION AND NAVIGATION SYMPOSIUM, VOLS 1-3, 2008, : 186 - +
  • [18] Analysis Local Convergence of Gauss-Newton Method
    Siregar, Rahmi Wahidah
    Tulus
    Ramli, Marwan
    4TH INTERNATIONAL CONFERENCE ON OPERATIONAL RESEARCH (INTERIOR), 2018, 300
  • [19] Coupling topological gradient and Gauss-Newton method
    Fehrenbach, Jerome
    Masmoudi, Mohamed
    IUTAM SYMPOSIUM ON TOPOLOGICAL DESIGN OPTIMIZATION OF STRUCTURES, MACHINES AND MATERIALS: STATUS AND PERSPECTIVES, 2006, 137 : 595 - +
  • [20] A smoothing Gauss-Newton method for the generalized HLCP
    Xiu, NH
    Zhang, JZ
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2001, 129 (1-2) : 195 - 208