On the Gauss-Newton method

被引:7
|
作者
Argyros I.K. [1 ]
Hilout S. [1 ]
机构
[1] Laboratoire de Mathématiques et Applications, Poitiers University, Futuroscope Chasseneuil Cedex 86962, Bd. Pierre et Marie Curie
关键词
Fréchet-derivative; Gauss-Newton method; More-Penrose pseudo-inverse; Semilocal convergence;
D O I
10.1007/s12190-010-0377-8
中图分类号
学科分类号
摘要
We provide a new semilocal convergence analysis of the Gauss-Newton method (GNM) for solving nonlinear equation in the Euclidean space. Using a combination of center-Lipschitz, Lipschitz conditions, and our new idea of recurrent functions, we provide under the same or weaker hypotheses than before (Ben-Israel, J. Math. Anal. Appl. 15:243-252, 1966; Chen and Nashed, Numer. Math. 66:235-257, 1993; Deuflhard and Heindl, SIAM J. Numer. Anal. 16:1-10, 1979; Guo, J. Comput. Math. 25:231-242, 2007; Häuler, Numer. Math. 48:119-125, 1986; Hu et al., J. Comput. Appl. Math. 219:110-122, 2008; Kantorovich and Akilov, Functional Analysis in Normed Spaces, Pergamon, Oxford, 1982), a finer convergence analysis. The results can be extended in case outer or generalized inverses are used. Numerical examples are also provided to show that our results apply, where others fail (Ben-Israel, J. Math. Anal. Appl. 15:243-252, 1966; Chen and Nashed, Numer. Math. 66:235-257, 1993; Deuflhard and Heindl, SIAM J. Numer. Anal. 16:1-10, 1979; Guo, J. Comput. Math. 25:231-242, 2007; Häuler, Numer. Math. 48:119-125, 1986; Hu et al., J. Comput. Appl. Math. 219:110-122, 2008; Kantorovich and Akilov, Functional Analysis in Normed Spaces, Pergamon, Oxford, 1982). © 2010 Korean Society for Computational and Applied Mathematics.
引用
收藏
页码:537 / 550
页数:13
相关论文
共 50 条
  • [11] ON THE GAUSS-NEWTON METHOD FOR CONVEX OPTIMIZATION USING RESTRICTED CONVERGENCE DOMAINS
    Argyros, Ioannis K.
    George, Santhosh
    JOURNAL OF NONLINEAR FUNCTIONAL ANALYSIS, 2016,
  • [12] Gauss-Newton particle filter
    Cao, Hui
    Ohnishi, Noboru
    Takeuchi, Yoshinori
    Matsumoto, Tetsuya
    Kudo, Hiroaki
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2007, E90A (06) : 1235 - 1239
  • [13] LEAST-SQUARES METHOD FOR THE BUBBLE STABILIZATION BY THE GAUSS-NEWTON METHOD
    Kim, Seung Soo
    Lee, Yong Hun
    Oh, Eun Jung
    HONAM MATHEMATICAL JOURNAL, 2016, 38 (01): : 47 - 57
  • [14] Gauss-Newton method for convex composite optimizations on Riemannian manifolds
    Wang, Jin-Hua
    Yao, Jen-Chih
    Li, Chong
    JOURNAL OF GLOBAL OPTIMIZATION, 2012, 53 (01) : 5 - 28
  • [15] Extending the applicability of Gauss-Newton method for convex composite optimization on Riemannian manifolds
    Argyros, Ioannis K.
    Alberto Magrenan, Angel
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 249 : 453 - 467
  • [16] A distributed Gauss-Newton method for distribution system state estimation
    Li, Keqiang
    Han, Xueshan
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2022, 136
  • [17] Adaptive Gauss-Newton Method for Solving Systems of Nonlinear Equations
    Yudin, N. E.
    DOKLADY MATHEMATICS, 2021, 104 (02) : 293 - 296
  • [18] A nonmonotone damped Gauss-Newton method for nonlinear complementarity problems
    Dong, Li
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2023, (49): : 206 - 215
  • [19] ON THE CONVERGENCE OF INEXACT GAUSS-NEWTON METHOD FOR SOLVING SINGULAR EQUATIONS
    Argyros, Ioannis K.
    George, Santhosh
    JOURNAL OF NONLINEAR FUNCTIONAL ANALYSIS, 2016,
  • [20] Comparison of TE and TM Inversions in the Framework of the Gauss-Newton Method
    Mojabi, Puyan
    LoVetri, Joe
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2010, 58 (04) : 1336 - 1348