On the Gauss-Newton method

被引:7
|
作者
Argyros I.K. [1 ]
Hilout S. [1 ]
机构
[1] Laboratoire de Mathématiques et Applications, Poitiers University, Futuroscope Chasseneuil Cedex 86962, Bd. Pierre et Marie Curie
关键词
Fréchet-derivative; Gauss-Newton method; More-Penrose pseudo-inverse; Semilocal convergence;
D O I
10.1007/s12190-010-0377-8
中图分类号
学科分类号
摘要
We provide a new semilocal convergence analysis of the Gauss-Newton method (GNM) for solving nonlinear equation in the Euclidean space. Using a combination of center-Lipschitz, Lipschitz conditions, and our new idea of recurrent functions, we provide under the same or weaker hypotheses than before (Ben-Israel, J. Math. Anal. Appl. 15:243-252, 1966; Chen and Nashed, Numer. Math. 66:235-257, 1993; Deuflhard and Heindl, SIAM J. Numer. Anal. 16:1-10, 1979; Guo, J. Comput. Math. 25:231-242, 2007; Häuler, Numer. Math. 48:119-125, 1986; Hu et al., J. Comput. Appl. Math. 219:110-122, 2008; Kantorovich and Akilov, Functional Analysis in Normed Spaces, Pergamon, Oxford, 1982), a finer convergence analysis. The results can be extended in case outer or generalized inverses are used. Numerical examples are also provided to show that our results apply, where others fail (Ben-Israel, J. Math. Anal. Appl. 15:243-252, 1966; Chen and Nashed, Numer. Math. 66:235-257, 1993; Deuflhard and Heindl, SIAM J. Numer. Anal. 16:1-10, 1979; Guo, J. Comput. Math. 25:231-242, 2007; Häuler, Numer. Math. 48:119-125, 1986; Hu et al., J. Comput. Appl. Math. 219:110-122, 2008; Kantorovich and Akilov, Functional Analysis in Normed Spaces, Pergamon, Oxford, 1982). © 2010 Korean Society for Computational and Applied Mathematics.
引用
收藏
页码:537 / 550
页数:13
相关论文
共 50 条
  • [1] ON THE SEMILOCAL CONVERGENCE OF THE GAUSS-NEWTON METHOD USING RECURRENT FUNCTIONS
    Argyros, Ioannis K.
    Hilout, Said
    JOURNAL OF THE KOREAN SOCIETY OF MATHEMATICAL EDUCATION SERIES B-PURE AND APPLIED MATHEMATICS, 2010, 17 (04): : 307 - 319
  • [2] Phaseless Recovery Using the Gauss-Newton Method
    Gao, Bing
    Xu, Zhiqiang
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2017, 65 (22) : 5885 - 5896
  • [3] Coupling topological gradient and Gauss-Newton method
    Fehrenbach, Jerome
    Masmoudi, Mohamed
    IUTAM SYMPOSIUM ON TOPOLOGICAL DESIGN OPTIMIZATION OF STRUCTURES, MACHINES AND MATERIALS: STATUS AND PERSPECTIVES, 2006, 137 : 595 - +
  • [4] Convergence analysis of a proximal Gauss-Newton method
    Salzo, Saverio
    Villa, Silvia
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2012, 53 (02) : 557 - 589
  • [5] A derivative-free Gauss-Newton method
    Cartis, Coralia
    Roberts, Lindon
    MATHEMATICAL PROGRAMMING COMPUTATION, 2019, 11 (04) : 631 - 674
  • [6] Convergence analysis of a proximal Gauss-Newton method
    Saverio Salzo
    Silvia Villa
    Computational Optimization and Applications, 2012, 53 : 557 - 589
  • [7] ON SMOOTHNESS AND INVARIANCE PROPERTIES OF THE GAUSS-NEWTON METHOD
    BEYN, WJ
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 1993, 14 (5-6) : 503 - 514
  • [8] A Stochastic iteratively regularized Gauss-Newton method
    Bergou, Elhoucine
    Chada, Neil K.
    Diouane, Youssef
    INVERSE PROBLEMS, 2025, 41 (01)
  • [9] On convergence of the Gauss-Newton method for convex composite optimization
    Li, C
    Wang, XH
    MATHEMATICAL PROGRAMMING, 2002, 91 (02) : 349 - 356
  • [10] Gauss-Newton Method for DEM Co-registration
    Wang, Kunlun
    Zhang, Tonggang
    INTERNATIONAL CONFERENCE ON INTELLIGENT EARTH OBSERVING AND APPLICATIONS 2015, 2015, 9808