Let A be a commutative ring, and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}${\mathfrak{a}}$\end{document} a weakly proregular ideal in A. This includes the noetherian case: if A is noetherian then any ideal in it is weakly proregular; but there are other interesting examples. In this paper we prove the MGM equivalence, which is an equivalence between the category of cohomologically \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}${\mathfrak{a}}$\end{document}-adically complete complexes and the category of cohomologically \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}${\mathfrak{a}}$\end{document}-torsion complexes. These are triangulated subcategories of the derived category of A-modules. Our work extends earlier work by Alonso–Jeremias–Lipman, Schenzel and Dwyer–Greenlees.