On the Homology of Completion and Torsion

被引:0
|
作者
Marco Porta
Liran Shaul
Amnon Yekutieli
机构
[1] Ben Gurion University,Department of Mathematics
来源
关键词
Adic completion; torsion; derived functors; Primary 13D07; Secondary 13B35; 13C12; 13D09; 18E30;
D O I
暂无
中图分类号
学科分类号
摘要
Let A be a commutative ring, and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\mathfrak{a}}$\end{document} a weakly proregular ideal in A. This includes the noetherian case: if A is noetherian then any ideal in it is weakly proregular; but there are other interesting examples. In this paper we prove the MGM equivalence, which is an equivalence between the category of cohomologically \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\mathfrak{a}}$\end{document}-adically complete complexes and the category of cohomologically \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\mathfrak{a}}$\end{document}-torsion complexes. These are triangulated subcategories of the derived category of A-modules. Our work extends earlier work by Alonso–Jeremias–Lipman, Schenzel and Dwyer–Greenlees.
引用
收藏
页码:31 / 67
页数:36
相关论文
共 50 条
  • [1] On the Homology of Completion and Torsion
    Porta, Marco
    Shaul, Liran
    Yekutieli, Amnon
    ALGEBRAS AND REPRESENTATION THEORY, 2014, 17 (01) : 31 - 67
  • [2] Erratum to: On the Homology of Completion and Torsion
    Marco Porta
    Liran Shaul
    Amnon Yekutieli
    Algebras and Representation Theory, 2015, 18 : 1401 - 1405
  • [3] On the Homology of Completion and Torsion (vol 17, pg 31, 2014)
    Porta, Marco
    Shaul, Liran
    Yekutieli, Amnon
    ALGEBRAS AND REPRESENTATION THEORY, 2015, 18 (05) : 1401 - 1405
  • [4] Chromatic homology, Khovanov homology, and torsion
    Lowrance, Adam M.
    Sazdanovic, Radmila
    TOPOLOGY AND ITS APPLICATIONS, 2017, 222 : 77 - 99
  • [5] Torsion in graph homology
    Helme-Guizon, Laure
    Przytycki, Jozef H.
    Rong, Yongwu
    FUNDAMENTA MATHEMATICAE, 2006, 190 : 139 - 177
  • [6] Torsion of Khovanov homology
    Shumakovitch, Alexander N.
    FUNDAMENTA MATHEMATICAE, 2014, 225 : 343 - 364
  • [7] ON GENERALIZED COMPLETION HOMOLOGY MODULES
    Mahmood, Waqas
    MATHEMATICAL REPORTS, 2019, 21 (04): : 411 - 429
  • [8] HOMOLOGY OF THE COMPLETION OF A LIE ALGEBRA
    Felix, Yves
    Murillo, Aniceto
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2022, 150 (01) : 95 - 103
  • [9] Torsion in Milnor fiber homology
    Cohen, Daniel C.
    Denham, Graham
    Suciu, Alexander I.
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2003, 3 (01): : 511 - 535
  • [10] Torsion in the magnitude homology of graphs
    Radmila Sazdanovic
    Victor Summers
    Journal of Homotopy and Related Structures, 2021, 16 : 275 - 296