A minimization problem with variable growth on Nehari manifold

被引:0
作者
Xia Zhang
机构
[1] Harbin Institute of Technology,Department of Mathematics
来源
Monatshefte für Mathematik | 2016年 / 181卷
关键词
Variable exponent Sobolev space; Concentration compactness principle; Nehari manifold; 46E35; 47J30;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, based on the theory of variable exponent space, we study a class of minimizing problem on Nehari manifold via concentration compactness principle. Under suitable assumptions, by showing a relative compactness of minimizing sequences, we prove the existence of minimizers.
引用
收藏
页码:485 / 500
页数:15
相关论文
共 31 条
  • [1] Adamowicz T(2011)Harnack’s inequality and the strong J. Differ. Equ. 250 1631-1649
  • [2] Hästö P(2005)-Laplacian Prog. Nonlinear Differ. Equ. Appl. 66 17-32
  • [3] Alves CO(2007)Existence of solutions for a class of problems in Adv. Math. Sc. Appl. 17 287-304
  • [4] Souto MAS(2006) involving SIAM J. Appl. Math. 66 1383-1406
  • [5] Antontsev S(2008)-Laplacian J. Math. Anal. Appl. 341 103-119
  • [6] Chipot M(2001)Uniquenesss results for equation of the J. Math. Anal. Appl. 255 333-348
  • [7] Xie Y(2004)-Laplacian type Nonlinear Anal. 59 173-188
  • [8] Chen Y(2010)Variable exponent, linear growth functionals in image restoration Proc. R. Soc. A 466 1667-1686
  • [9] Levine S(2011)-Laplacian equations in Nonlinear Anal. Real World Appl. 12 2304-2318
  • [10] Rao M(1991) with periodic data and nonperiodic perturbations Czechoslovak Math. J. 41 592-618