A Priori Bounds for Periodic Solutions of a Kind of Second Order Neutral Functional Differential Equation with Multiple Deviating Arguments

被引:0
|
作者
Shi Ping Lu
Wei Gao Ge
机构
[1] Anhui Normal University,Department of Mathematics
[2] Beijing Institute of Technology,Department of Applied Mathematics
来源
Acta Mathematica Sinica | 2005年 / 21卷
关键词
Periodic solution; Continuation theorem; Neutral functional differential equation; 34B15; 34K13;
D O I
暂无
中图分类号
学科分类号
摘要
The main aim of this paper is to use the continuation theorem of coincidence degree theory for studying the existence of periodic solutions to a kind of neutral functional differential equation as follows:\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\left( {x{\left( t \right)} - {\sum\limits_{i = 1}^n {c_{i} x{\left( {t - r_{i} } \right)}} }} \right)}^{{\prime \prime }} = f{\left( {x{\left( t \right)}} \right)}{x}\ifmmode{'}\else$'$\fi{\left( t \right)} + g{\left( {x{\left( {t - \tau } \right)}} \right)} + p{\left( t \right)}. $$\end{document} In order to do so, we analyze the structure of the linear difference operator A : C2π →C2π, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\left[ {Ax} \right]}{\left( t \right)} = x{\left( t \right)} - {\sum\nolimits_{i = 1}^n {c_{i} x{\left( {t - r_{i} } \right)}} } $$\end{document} to determine some fundamental properties first, which we are going to use throughout this paper. Meanwhile, we also prove some new inequalities which are useful for estimating a priori bounds of periodic solutions.
引用
收藏
页码:1309 / 1314
页数:5
相关论文
共 50 条