共 50 条
A Priori Bounds for Periodic Solutions of a Kind of Second Order Neutral Functional Differential Equation with Multiple Deviating Arguments
被引:0
|作者:
Shi Ping Lu
Wei Gao Ge
机构:
[1] Anhui Normal University,Department of Mathematics
[2] Beijing Institute of Technology,Department of Applied Mathematics
来源:
关键词:
Periodic solution;
Continuation theorem;
Neutral functional differential equation;
34B15;
34K13;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
The main aim of this paper is to use the continuation theorem of coincidence degree theory
for studying the existence of periodic solutions to a kind of neutral functional differential equation as
follows:\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$
{\left( {x{\left( t \right)} - {\sum\limits_{i = 1}^n {c_{i} x{\left( {t - r_{i} } \right)}} }} \right)}^{{\prime \prime }} = f{\left( {x{\left( t \right)}} \right)}{x}\ifmmode{'}\else$'$\fi{\left( t \right)} + g{\left( {x{\left( {t - \tau } \right)}} \right)} + p{\left( t \right)}.
$$\end{document}
In order to do so, we analyze the structure of the linear difference operator A : C2π →C2π, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$
{\left[ {Ax} \right]}{\left( t \right)} = x{\left( t \right)} - {\sum\nolimits_{i = 1}^n {c_{i} x{\left( {t - r_{i} } \right)}} }
$$\end{document} to determine some fundamental properties first, which we are going to use
throughout this paper. Meanwhile, we also prove some new inequalities which are useful for estimating
a priori bounds of periodic solutions.
引用
收藏
页码:1309 / 1314
页数:5
相关论文