The Dichromatic Polynomial of a Digraph

被引:0
作者
D. González-Moreno
R. Hernández-Ortiz
B. Llano
M. Olsen
机构
[1] Universidad Autónoma Metropolitana,
[2] Universidad Autónoma Metropolitana,undefined
来源
Graphs and Combinatorics | 2022年 / 38卷
关键词
Digraph; Dichromatic number; Dichromatic polynomial; Dichromatically unique; 05C15;
D O I
暂无
中图分类号
学科分类号
摘要
Let λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document} be a positive integer. An acyclic λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}-coloring of a digraph D is a partition of the vertices of D into λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document} color clases such that the color classes induce acyclic subdigraphs in D. The minimum integer λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document} for which there exists an acyclic λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}-coloring of D is the dichromatic numberdc(D) of D. Let P(D;λ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P(D;\lambda )$$\end{document} be the dichromatic polynomial of D, which is the number of acyclic λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}-colorings of D. In this paper, a recursive formula for P(D;λ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P(D;\lambda )$$\end{document} is given. The coefficients of the polynomial P(D;λ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P(D;\lambda )$$\end{document} are studied. The dichromatic polynomial of a digraph D is related to the structure of its underlying graph UG(D). Also, we study dichromatic equivalently and dichromatically unique digraphs.
引用
收藏
相关论文
共 5 条
[1]  
Neumann-Lara V(1982)The dichromatic number of a digraph J. Combin. Theory Ser. B 33 265-270
[2]  
Neumann-Lara V(1994)The 3 and 4-dichromatic tournaments of minimum order Discrete Math. 135 233-243
[3]  
Read R(1968)An introduction to chromatic polynomials J. Combin. Theory 4 52-71
[4]  
Tutte WT(1967)On dichromatic polynomials J. Combin. Theory 2 301-320
[5]  
Whitney H(1932)A logical expansion in mathematics Bull. Am. Math. Soc. 38 572-580