Growth of Solutions of Complex Differential Equations with Solutions of Another Equation as Coefficients

被引:0
作者
Jianren Long
Tingmi Wu
Xiubi Wu
机构
[1] Guizhou Normal University,School of Mathematical Sciences
来源
Computational Methods and Function Theory | 2019年 / 19卷
关键词
Complex differential equation; Entire function; Infinite order; Asymptotic growth; Primary 34M10; Secondary 30D35;
D O I
暂无
中图分类号
学科分类号
摘要
We study the growth of solutions of f′′+A(z)f′+B(z)f=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f''+A(z)f'+B(z)f=0$$\end{document}, where A(z) and B(z) are non-trivial solutions of another second-order complex differential equations. Some conditions guaranteeing that every non-trivial solution of the equation is of infinite order are obtained, in which the notion of accumulation rays of the zero sequence of entire functions is used.
引用
收藏
页码:3 / 16
页数:13
相关论文
共 51 条
[1]  
Bank S(1982)On the oscillation theory of Trans. Am. Math. Soc. 273 334-360
[2]  
Laine I(1984) where Comment. Math. Univ. St. Paul. 33 143-151
[3]  
Bank S(1970) is entire Proc. Lond. Math. Soc. 21 334-336
[4]  
Frank G(2002)A note on the distribution of solutions of linear differential equations Sci. China Ser. A 45 290-300
[5]  
Barry PD(1986)Some theorems related to the Ann. Acad. Sci. Fenn. Math. 11 275-294
[6]  
Chen ZX(1988) theorem J. Lond. Math. Soc. (2) 37 88-104
[7]  
Gundersen GG(1988)The growth of solutions of the differential equation Trans. Am. Math. Soc. 305 415-429
[8]  
Gundersen GG(1993), where the order Trans. Am. Math. Soc. 337 737-755
[9]  
Gundersen GG(2001)On the real zeros of solutions of Ann. Acad. Sci. Fenn. Math. 26 483-488
[10]  
Gundersen GG(1991) where Trans. Am. Math. Soc. 324 693-706