Characterization of Holomorphic Invariant Strongly Pseudoconvex Complex Finsler Metrics on Unit Polydisks

被引:0
作者
Shuqing Lin
Chunping Zhong
机构
[1] Xiamen University,School of Mathematical Sciences
来源
The Journal of Geometric Analysis | 2023年 / 33卷
关键词
Holomorphic invariant metric; Kähler–Berwald metric; Holomorphic sectional curvature; Schwarz lemma; 53C56; 53C60; 32H02;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we give a characterization of Aut(Pn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text{ Aut }(P_n)$$\end{document}-invariant strongly pseudoconvex complex Finsler metrics on the unit polydisk in Cn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {C}}^n$$\end{document}. We prove that every Aut(Pn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text{ Aut }(P_n)$$\end{document}-invariant strongly pseudoconvex complex Finsler metric F on Pn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_n$$\end{document} is necessary a Kähler–Berwald metric. The holomorphic sectional curvature of (Pn,F)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(P_n,F)$$\end{document} is bounded below and above by two negative constants -K1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-K_1$$\end{document} and -K2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-K_2$$\end{document}, respectively, and the holomorphic bisectional curvature of (Pn,F)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(P_n,F)$$\end{document} is nonpositive and bounded below by a negative constant. This important property makes it possible for us to establish a Schwarz lemma for holomorphic mappings from the unit polydisk Pm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_m$$\end{document} into Pn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_n$$\end{document} whenever the polydisks are endowed with holomorphic invariant Kähler–Berwald metrics which are not necessary Hermitian quadratic. As an application, we show that the Schwarz constant of (Pn,F)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(P_n,F)$$\end{document} is both an analytic invariant and a geometric invariant.
引用
收藏
相关论文
共 26 条
  • [1] Aikou T(1995)Complex manifolds modeled on a complex Minkowski space J. Math. Kyoto Univ. 35 85-103
  • [2] Ahlfors LV(1938)An extension of Schwarz’s lemma Trans. Am. Math. Soc. 43 359-364
  • [3] Cartan E(1935)Sur les domaines bornés homog Abh. Math. Sem. Hamb. Univ. II 116-162
  • [4] Chen B(2009)nes de léspace de Chin. Ann. Math. Ser. B 30 173-178
  • [5] Shen Y(1979) variables coplexes Sci. Sinica 22 1238-1247
  • [6] Chen ZH(1996)Kähler Finsler metrics are actually strongly Kähler Not. AMS 43 959-963
  • [7] Cheng SY(1967)On the Schwarz lemma for complete Kähler manifolds J. Math. Soc. Jpn. 19 481-485
  • [8] Lu QK(1966)Finsler geometry is just Riemannian geometry without the quadratic Restriction Proc. Am. Math. Soc. 17 210-213
  • [9] Chern S-S(1957)Distance, holomorphic mappings and the Schwarz lemma Acta Math. Sinica 7 370-420
  • [10] Kobayashi S(1958)A Schwarz lemma for bounded symmetric domains Sci. Sinica 5 453-504