A Liouville type theorem for the stationary compressible Navier–Stokes equations

被引:0
作者
Pan Liu
机构
[1] Yulin University,School of Mathematics and Statistics
来源
Analysis and Mathematical Physics | 2022年 / 12卷
关键词
Liouville type theorem; Compressible Navier–Stokes equations; Stationary system; 35Q30; 76N06; 76N10;
D O I
暂无
中图分类号
学科分类号
摘要
The present paper is dedicated to the Liouville type problem for the three-dimensional stationary barotropic compressible Navier–Stokes equations. We show that the velocity is trivial under some additional assumptions stated in terms of Lebesgue and BMO-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathrm {BMO}^{-1} $$\end{document} spaces.
引用
收藏
相关论文
共 50 条
[41]   Liouville-type theorem for Kirchhoff equations involving Grushin operators [J].
Yunfeng Wei ;
Caisheng Chen ;
Hongwei Yang .
Boundary Value Problems, 2020
[42]   A note on the Liouville type theorem for the smooth solutions of the stationary Hall-MHD system [J].
Gala, Sadek .
AIMS MATHEMATICS, 2016, 1 (03) :282-287
[43]   REMARKS ON LIOUVILLE TYPE THEOREMS FOR THE 3D STATIONARY MHD EQUATIONS [J].
Li, Zhouyu ;
Liu, Pan ;
Niu, Pengcheng .
BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2020, 57 (05) :1151-1164
[44]   REMARKS ON THE LIOUVILLE TYPE THEOREMS FOR THE 3D STATIONARY MHD EQUATIONS [J].
Wang, Peng ;
Zhou, Shidi .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2023, 22 (04) :996-1008
[45]   Statistical solution and Liouville type theorem for the Klein-Gordon-Schrodinger equations [J].
Zhao, Caidi ;
Caraballo, Tomas ;
Lukaszewicz, Grzegorz .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 281 :1-32
[46]   Liouville type theorems for the stationary Hall-magnetohydrodynamic equations in local Morrey spaces [J].
Li, Zhouyu ;
Su, Yifan .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2022, 45 (17) :10891-10903
[47]   Liouville type Theorems for the 3D stationary Hall-MHD equations [J].
Li, Zhouyu ;
Niu, Pengcheng .
ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2020, 100 (05)
[48]   Liouville-Type Theorem for Nonlinear Elliptic Equations Involving Generalized Greiner Operator [J].
Shi, Wei .
MATHEMATICS, 2023, 11 (01)
[49]   INTERIOR ESTIMATES OF DERIVATIVES AND A LIOUVILLE TYPE THEOREM FOR PARABOLIC k-HESSIAN EQUATIONS [J].
Bao, Jiguang ;
Qiang, Jiechen ;
Tang, Zhongwei ;
Wang, Cong .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2023, 22 (08) :2466-2480
[50]   A Pogorelov estimate and a Liouville-type theorem to parabolic k-Hessian equations [J].
He, Yan ;
Sheng, Haoyang ;
Xiang, Ni ;
Zhang, Jiannan .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2022, 24 (04)