A Liouville type theorem for the stationary compressible Navier–Stokes equations

被引:0
作者
Pan Liu
机构
[1] Yulin University,School of Mathematics and Statistics
来源
Analysis and Mathematical Physics | 2022年 / 12卷
关键词
Liouville type theorem; Compressible Navier–Stokes equations; Stationary system; 35Q30; 76N06; 76N10;
D O I
暂无
中图分类号
学科分类号
摘要
The present paper is dedicated to the Liouville type problem for the three-dimensional stationary barotropic compressible Navier–Stokes equations. We show that the velocity is trivial under some additional assumptions stated in terms of Lebesgue and BMO-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathrm {BMO}^{-1} $$\end{document} spaces.
引用
收藏
相关论文
共 50 条
[31]   Liouville type theorem for higher-order elliptic system with Navier boundary condition [J].
Weiwei Zhao ;
Jinge Yang ;
Sining Zheng .
Nonlinear Differential Equations and Applications NoDEA, 2015, 22 :311-324
[32]   Liouville-type theorems for the stationary inhomogeneous incompressible MHD equations [J].
Liu, Pan .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2023, 521 (02)
[33]   Liouville-type theorems for the 3D compressible magnetohydrodynamics equations [J].
Wu, Fan .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2022, 64
[34]   UNIFORM LOWER BOUND AND LIOUVILLE TYPE THEOREM FOR FRACTIONAL LICHNEROWICZ EQUATIONS [J].
Duong, Anh Tuan ;
Nguyen, Van Hoang ;
Nguyen, Thi Quynh .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2021, 104 (03) :484-492
[35]   The Liouville Type Theorem for a System of Nonlinear Integral Equations on Exterior Domain [J].
Yin Rong ;
Zhang Jihui ;
Shang Xudong .
JOURNAL OF PARTIAL DIFFERENTIAL EQUATIONS, 2019, 32 (03) :191-206
[36]   Liouville-type theorem for Kirchhoff equations involving Grushin operators [J].
Wei, Yunfeng ;
Chen, Caisheng ;
Yang, Hongwei .
BOUNDARY VALUE PROBLEMS, 2020, 2020 (01)
[37]   Liouville-type theorem for Kirchhoff equations involving Grushin operators [J].
Yunfeng Wei ;
Caisheng Chen ;
Hongwei Yang .
Boundary Value Problems, 2020
[38]   A note on the Liouville type theorem for the smooth solutions of the stationary Hall-MHD system [J].
Gala, Sadek .
AIMS MATHEMATICS, 2016, 1 (03) :282-287
[39]   REMARKS ON LIOUVILLE TYPE THEOREMS FOR THE 3D STATIONARY MHD EQUATIONS [J].
Li, Zhouyu ;
Liu, Pan ;
Niu, Pengcheng .
BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2020, 57 (05) :1151-1164
[40]   REMARKS ON THE LIOUVILLE TYPE THEOREMS FOR THE 3D STATIONARY MHD EQUATIONS [J].
Wang, Peng ;
Zhou, Shidi .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2023, 22 (04) :996-1008