A Liouville type theorem for the stationary compressible Navier–Stokes equations

被引:0
作者
Pan Liu
机构
[1] Yulin University,School of Mathematics and Statistics
来源
Analysis and Mathematical Physics | 2022年 / 12卷
关键词
Liouville type theorem; Compressible Navier–Stokes equations; Stationary system; 35Q30; 76N06; 76N10;
D O I
暂无
中图分类号
学科分类号
摘要
The present paper is dedicated to the Liouville type problem for the three-dimensional stationary barotropic compressible Navier–Stokes equations. We show that the velocity is trivial under some additional assumptions stated in terms of Lebesgue and BMO-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathrm {BMO}^{-1} $$\end{document} spaces.
引用
收藏
相关论文
共 50 条
[21]   On Liouville Type Theorem for Stationary Non-Newtonian Fluid Equations [J].
Dongho Chae ;
Jörg Wolf .
Journal of Nonlinear Science, 2020, 30 :1503-1517
[22]   On Liouville Type Theorem for Stationary Non-Newtonian Fluid Equations [J].
Chae, Dongho ;
Wolf, Joerg .
JOURNAL OF NONLINEAR SCIENCE, 2020, 30 (04) :1503-1517
[23]   LIOUVILLE TYPE THEOREMS FOR THE STEADY AXIALLY SYMMETRIC NAVIER-STOKES AND MAGNETOHYDRODYNAMIC EQUATIONS [J].
Chae, Dongho ;
Weng, Shangkun .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2016, 36 (10) :5267-5285
[25]   A Liouville-type Theorem for the Stationary Magneto-micropolar Fluid Equations [J].
Zu, Qian ;
Zhang, Hui .
ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2025,
[26]   Liouville-type theorem for the stationary fractional compressible MHD system in anisotropic Lebesgue spaces [J].
Pei, Wenda ;
Zeng, Yong .
ELECTRONIC RESEARCH ARCHIVE, 2025, 33 (03) :1306-1322
[27]   Liouville type theorems for 3D stationary Navier-Stokes equations in weighted mixed-norm Lebesgue spaces [J].
Tuoc Phan .
DYNAMICS OF PARTIAL DIFFERENTIAL EQUATIONS, 2020, 17 (03) :229-243
[28]   The Liouville type theorem for the stationary magnetohydrodynamic equations in weighted mixed-norm Lebesgue spaces [J].
Fan, Huiying ;
Wang, Meng .
DYNAMICS OF PARTIAL DIFFERENTIAL EQUATIONS, 2021, 18 (04) :327-340
[29]   Remarks on Liouville type theorems for the 3D steady axially symmetric Navier-Stokes equations [J].
Wang, Wendong .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2019, 266 (10) :6507-6524
[30]   An Lp-theory for fractional stationary Navier-Stokes equations [J].
Jarrin, Oscar ;
Vergara-Hermosilla, Gaston .
JOURNAL OF ELLIPTIC AND PARABOLIC EQUATIONS, 2024, 10 (02) :859-898