A new generalization of the Bernoulli and related polynomials

被引:0
作者
H. M. Srivastava
M. Garg
S. Choudhary
机构
[1] University of Victoria Victoria,Department of Mathematics and Statistics
[2] University of Rajasthan,Department of Mathematics
[3] Swami Keshvanand Institute of Technology Management and Gramothan,Department of Mathematics
来源
Russian Journal of Mathematical Physics | 2010年 / 17卷
关键词
Zeta Function; General Polynomial; Bernoulli Number; Bernoulli Polynomial; Euler Polynomial;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we introduce and investigate a generalization of the Bernoulli polynomials by means of a suitable generating function. We establish several interesting properties of these general polynomials. Furthermore, we give explicit series representations for these general polynomials in terms of a certain generalized Hurwitz-Lerch zeta function and the familiar Gauss hypergeometric function.
引用
收藏
页码:251 / 261
页数:10
相关论文
共 48 条
[1]  
Apostol T. M.(1951)On the Lerch Zeta Function Pacific J. Math. 1 161-167
[2]  
Choi J.(2008)Some Appl. Math. Comput. 199 723-737
[3]  
Anderson P. J.(2009)-extensions of the Apostol-Bernoulli and the Apostol-Euler Polynomials of Order Appl. Math. Comput. 215 1185-1208
[4]  
Srivastava H. M.(2008) and the Multiple Hurwitz Zeta Function Integral Transforms Spec. Funct. 19 65-79
[5]  
Choi J.(1998)Carlitz’s J. Aust. Math. Soc. Ser. A 64 307-316
[6]  
Anderson P. J.(2006)-Bernoulli and Integral Transforms Spec. Funct. 17 803-815
[7]  
Srivastava H. M.(1997)-Euler Numbers and Polynomials and a Class of Ganita Sandesh 11 99-108
[8]  
Choi J.(2002)-Hurwitz Zeta Functions Internat. J. Math. Ed. Sci. Tech. 33 428-431
[9]  
Jang D. S.(2004)A Generalization of the Hurwitz-Lerch Zeta Function Appl. Math. Comput. 154 725-733
[10]  
Srivastava H. M.(2006)Representation Formulas for Entire Functions of Exponential Type and Generalized Bernoulli Polynomials Integral Transforms Spec. Funct. 17 817-827