On the Maximal Multiplicity of Parts in a Random Integer Partition

被引:0
作者
Ljuben R. Mutafchiev
机构
[1] American University in Bulgaria,Institute of Mathematics and Informatics of the Bulgarian Academy of Sciences
来源
The Ramanujan Journal | 2005年 / 9卷
关键词
integer partitions; multiplicity of parts; limiting distributions;
D O I
暂无
中图分类号
学科分类号
摘要
We study the asymptotic behavior of the maximal multiplicity μn = μn(λ) of the parts in a partition λ of the positive integer n, assuming that λ is chosen uniformly at random from the set of all such partitions. We prove that πμn/(6n)1/2 converges weakly to max jXj/j as n→∞, where X1, X2, … are independent and exponentially distributed random variables with common mean equal to 1.
引用
收藏
页码:305 / 316
页数:11
相关论文
共 19 条
[1]  
Canfield R.(2001)Random partitions with non-negative rth differences Adv. Appl. Math. 27 298-317
[2]  
Corteel S.(1998)Durfee polynomials Electron. J. Combin. 5 R32-197
[3]  
Hitzenko P.(1999)On the multiplicity of parts in a random partition Random Struct. Alg. 14 185-345
[4]  
Canfield R.(1941)The distribution of the number of summands in the partitions of a positive integer Duke Math. J. 8 335-735
[5]  
Corteel S.(1993)The structure of random partitions of large integers Trans. Amer. Math. Soc. 337 703-158
[6]  
Savage C.(1995)The number of distinct part sizes in a random integer partition J. Combin. Theory, Ser. A69 149-95
[7]  
Corteel S.(1956)A generalization of Stirling’s formula J. Reine Angew. Math. 196 67-184
[8]  
Pittel B.(2002)On the size of the Durfee square of a random integer partition J. Comput. Appl. Math. 142 173-63
[9]  
Savage C.(1985)Asymptotic expansions for the coefficients of analytic generating functions Aequationes Math. 28 50-undefined
[10]  
Wilf H.(undefined)undefined undefined undefined undefined-undefined