Ordered fields and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{{\rm \L}\Pi\frac{1}{2}}}$$\end{document} -algebras

被引:0
作者
Enrico Marchioni
机构
[1] Open University of Catalonia,Department of Information and Communication Sciences
关键词
-algebras; Ordered fields; Real closed fields;
D O I
10.1007/s00500-008-0315-y
中图分类号
学科分类号
摘要
In this work we further explore the connection between \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{{\rm \L}\Pi\frac{1}{2}}}$$\end{document} -algebras and ordered fields. We show that any two \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{{\rm \L}\Pi\frac{1}{2}}}$$\end{document} -chains generate the same variety if and only if they are related to ordered fields that have the same universal theory. This will yield that any \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{{\rm \L}\Pi\frac{1}{2}}}$$\end{document} -chain generates the whole variety if and only if it contains a subalgebra isomorphic to the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{{\rm \L}\Pi\frac{1}{2}}}$$\end{document} -chain of real algebraic numbers, that consequently is the smallest \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{{\rm \L}\Pi\frac{1}{2}}}$$\end{document} -chain generating the whole variety. We also show that any two different subalgebras of the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{{\rm \L}\Pi\frac{1}{2}}}$$\end{document} -chain over the real algebraic numbers generate different varieties. This will be exploited in order to prove that the lattice of subvarieties of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{{\rm \L}\Pi\frac{1}{2}}}$$\end{document} -algebras has the cardinality of the continuum. Finally, we will also briefly deal with some model-theoretic properties of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{{\rm \L}\Pi\frac{1}{2}}}$$\end{document} -chains related to real closed fields, proving quantifier-elimination and related results.
引用
收藏
页码:559 / 564
页数:5
相关论文
共 50 条