Reward modeling for mitigating toxicity in transformer-based language models

被引:0
作者
Farshid Faal
Ketra Schmitt
Jia Yuan Yu
机构
[1] Concordia University,Concordia Institute for Information System Engineering
[2] Concordia University,Centre for Engineering in Society
来源
Applied Intelligence | 2023年 / 53卷
关键词
Language models; Transformers; Reinforcement learning; Toxic language mitigation; Natural language generation;
D O I
暂无
中图分类号
学科分类号
摘要
Transformer-based language models can generate fluent text and be efficiently adapted across various natural language generation tasks. However, language models that are pretrained on large unlabeled web text corpora have been shown to suffer from degenerating toxic content and social bias behaviors, consequently hindering their safe deployment. Various detoxification methods have been proposed to mitigate language model toxicity; however, these methods struggle to detoxify language models when conditioned on prompts that contain specific social identities related to gender, race, or religion. In this study, we propose Reinforce-Detoxify, a reinforcement learning-based method for mitigating toxicity in language models. We address the challenge of safety in language models and propose a new reward model that can detect toxic content and mitigate unintended bias towards social identities in toxicity prediction. The experiments demonstrate that the Reinforce-Detoxify method for language model detoxification outperforms existing detoxification approaches in automatic evaluation metrics, indicating that our approach in language model detoxification is less prone to unintended bias toward social identities in generated content.
引用
收藏
页码:8421 / 8435
页数:14
相关论文
共 50 条
  • [1] Reward modeling for mitigating toxicity in transformer-based language models
    Faal, Farshid
    Schmitt, Ketra
    Yu, Jia Yuan
    APPLIED INTELLIGENCE, 2023, 53 (07) : 8421 - 8435
  • [2] Transformer-based language models for mental health issues: A survey
    Greco, Candida M.
    Simeri, Andrea
    Tagarelli, Andrea
    Zumpano, Ester
    PATTERN RECOGNITION LETTERS, 2023, 167 : 204 - 211
  • [3] Quantifying the Bias of Transformer-Based Language Models for African American English in Masked Language Modeling
    Salutari, Flavia
    Ramos, Jerome
    Rahmani, Hossein A.
    Linguaglossa, Leonardo
    Lipani, Aldo
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PAKDD 2023, PT I, 2023, 13935 : 532 - 543
  • [4] AMMU: A survey of transformer-based biomedical pretrained language models
    Kalyan, Katikapalli Subramanyam
    Rajasekharan, Ajit
    Sangeetha, Sivanesan
    JOURNAL OF BIOMEDICAL INFORMATICS, 2022, 126
  • [5] Pre-trained transformer-based language models for Sundanese
    Wilson Wongso
    Henry Lucky
    Derwin Suhartono
    Journal of Big Data, 9
  • [6] Pre-trained transformer-based language models for Sundanese
    Wongso, Wilson
    Lucky, Henry
    Suhartono, Derwin
    JOURNAL OF BIG DATA, 2022, 9 (01)
  • [7] Automatic text summarization using transformer-based language models
    Rao, Ritika
    Sharma, Sourabh
    Malik, Nitin
    INTERNATIONAL JOURNAL OF SYSTEM ASSURANCE ENGINEERING AND MANAGEMENT, 2024, 15 (06) : 2599 - 2605
  • [8] Transformer-Based Composite Language Models for Text Evaluation and Classification
    Skoric, Mihailo
    Utvic, Milos
    Stankovic, Ranka
    MATHEMATICS, 2023, 11 (22)
  • [9] Pre-training and Evaluating Transformer-based Language Models for Icelandic
    Daoason, Jon Friorik
    Loftsson, Hrafn
    LREC 2022: THIRTEEN INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION, 2022, : 7386 - 7391
  • [10] Enhancing Address Data Integrity using Transformer-Based Language Models
    Kurklu, Omer Faruk
    Akagiunduz, Erdem
    32ND IEEE SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE, SIU 2024, 2024,