A new corrector–predictor interior-point method for symmetric cone optimization

被引:0
作者
B. Kheirfam
N. Hosseinpour
H. Abedi
机构
[1] Azarbaijan Shahi Madani University,Department of Mathematics
来源
Periodica Mathematica Hungarica | 2022年 / 85卷
关键词
Symmetric cone optimization; Corrector–predictor methods; Euclidean Jordan algebras; Polynomial complexity; 90C05; 90C25; 90C51;
D O I
暂无
中图分类号
学科分类号
摘要
In this work, we present a corrector–predictor interior-point method for symmetric cone optimization based on Euclidean Jordan algebras as a key tool. Indeed, we extend Darvay et al.’s original technique introduced in (Cent Eur J Oper Res 28(3):1123–1140, 2020) for linear optimization to symmetric cone optimization. An algebraic equivalent transformation of the system defining the central path, based on the function ψ(t)=t-t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi (t)=t-\sqrt{t}$$\end{document}, is used to obtain the search directions. At each iteration, the algorithm takes a damped Nesterov–Todd step in the predictor stage and a full Nesterov–Todd step in the corrector stage. We discuss the global convergence analysis of the proposed algorithm and prove that the complexity bound coincides with the one obtained for linear optimization. Moreover, numerical results show the efficiency of the proposed method.
引用
收藏
页码:312 / 327
页数:15
相关论文
共 58 条
[11]  
Darvay Z(1996)Full Nesterov–Todd step infeasible interior-point method for symmetric optimization Math. Oper. Res. 21 860-885
[12]  
Illés T(1984)Barrier functions in interior point methods Combinatorica 4 373-395
[13]  
Povh J(2014)A new polynomial-time algorithm for linear programming Yugosl. J. Oper. Res. 24 35-51
[14]  
Rigó PR(2018)A predictor-corrector path-following algorithm for symmetric optimization based on Darvay’s technique J. Appl. Math. Comput. 57 685-702
[15]  
Darvay Z(2015)An infeasible interior point method for the monotone SDLCP based on a transformation of the central path J. Optim. Theory Appl. 164 246-260
[16]  
Rigó PR(2016)A corrector–predictor path-following method for convex quadratic symmetric cone optimization Int. J. Comput. Math. 93 2064-2078
[17]  
Darvay Z(1992)A corrector–predictor path-following method for second-order cone optimization SIAM J. Optim. 2 575-601
[18]  
Papp IM(1993)On the implementation of a primal-dual interior point method Math. Oper. Res. 18 964-981
[19]  
Takács PR(1998)On adaptive-step primal-dual interior-point algorithms for linear programming Math. Program. 8 281-299
[20]  
Faybusovich L(1997)A unified analysis for a class of path-following primal-dual interior-point algorithms for semidefinite programming Math. Oper. Res. 22 1-42