A new corrector–predictor interior-point method for symmetric cone optimization

被引:0
作者
B. Kheirfam
N. Hosseinpour
H. Abedi
机构
[1] Azarbaijan Shahi Madani University,Department of Mathematics
来源
Periodica Mathematica Hungarica | 2022年 / 85卷
关键词
Symmetric cone optimization; Corrector–predictor methods; Euclidean Jordan algebras; Polynomial complexity; 90C05; 90C25; 90C51;
D O I
暂无
中图分类号
学科分类号
摘要
In this work, we present a corrector–predictor interior-point method for symmetric cone optimization based on Euclidean Jordan algebras as a key tool. Indeed, we extend Darvay et al.’s original technique introduced in (Cent Eur J Oper Res 28(3):1123–1140, 2020) for linear optimization to symmetric cone optimization. An algebraic equivalent transformation of the system defining the central path, based on the function ψ(t)=t-t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi (t)=t-\sqrt{t}$$\end{document}, is used to obtain the search directions. At each iteration, the algorithm takes a damped Nesterov–Todd step in the predictor stage and a full Nesterov–Todd step in the corrector stage. We discuss the global convergence analysis of the proposed algorithm and prove that the complexity bound coincides with the one obtained for linear optimization. Moreover, numerical results show the efficiency of the proposed method.
引用
收藏
页码:312 / 327
页数:15
相关论文
共 58 条
[1]  
Carpenter TJ(1993)Higher order predictor-corrector interior point methods with application to quadratic objectives SIAM J. Optim. 3 696-725
[2]  
Lustig IJ(2003)New interior point algorithms in linear programming Adv. Model. Optim. 5 51-92
[3]  
Mulvey JM(2009)A predictor–corrector algorithm for linearly constrained convex optimization Stud. Univ. Babeş-Bolyai Inform. 54 121-138
[4]  
Shanno DF(2020)A corrector–predictor interior-point method with new search direction for linear optimization Cent. Eur. J. Oper. Res. 28 1123-1140
[5]  
Darvay Z(2020)Feasible corrector–predictor interior-point algorithm for SIAM J. Optim. 30 2628-2658
[6]  
Darvay Z(2018)-linear complementarity problems based on a new search direction Numer. Funct. Anal. Optim. 39 1705-1726
[7]  
Darvay Z(2016)New interior-point algorithm for symmetric optimization based on a positive-asymptotic barrier function Period. Math. Hung. 73 27-42
[8]  
Illés T(1997)Complexity analysis of a full-Newton step interior-point method for linear optimization J. Comput. Appl. Math. 86 149-175
[9]  
Kheirfam B(2011)Linear system in Jordan algebras and primal-dual interior-point algorithms Comput. Optim. Appl. 48 453-485
[10]  
Rigó PR(2011)Corrector–predictor methods for sufficient linear complementarity problems Eur. J. Oper. Res. 214 473-484