Existence and Uniqueness of Solutions for a Boundary Value Problem of Fractional Type with Nonlocal Integral Boundary Conditions in Hölder Spaces

被引:0
作者
I. Cabrera
J. Harjani
K. Sadarangani
机构
[1] Universidad de Las Palmas de Gran Canaria,Departamento de Matemáticas
来源
Mediterranean Journal of Mathematics | 2018年 / 15卷
关键词
Fixed point; boundary value problem; fractional order; Hölder spaces; 47H10; 34B15; 34A08;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we prove the existence and uniqueness of solutions for the following fractional boundary value problem cD0+αu(t)=λf(t,u(t)),t∈[0,1],u(0)=γI0+ρu(η)=γ∫0η(η-s)ρ-1Γ(ρ)u(s)ds,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left\{ \begin{aligned}&^cD_{0+}^\alpha u(t)=\lambda f(t,u(t)),\quad t\in [0,1],\\&u(0)=\gamma I_{0+}^\rho u(\eta )=\gamma \int _0^\eta \frac{(\eta -s)^{\rho -1}}{\Gamma (\rho )}u(s)\mathrm {d}s, \end{aligned} \right. \end{aligned}$$\end{document}where 0<α≤1,0<η<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<\alpha \le 1, 0<\eta <1$$\end{document} and λ,γ,ρ∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda ,\gamma ,\rho \in \mathbb {R}$$\end{document}. Our solutions are placed in the space of functions satisfying the Hölder condition. Our analysis relies on a fixed point theorem in complete metric spaces. Moreover, we present some examples illustrating our results.
引用
收藏
相关论文
共 31 条
[1]  
Bai C(2006)Positive solutions for nonlinear fractional differential equations with coefficient that changes sign Nonlinear Anal. Theory Methods Appl. 64 677-685
[2]  
Bai Z(2010)On positive solutions of a nonlocal fractional boundary value problem Nonlinear Anal. Theory Methods Appl. 72 916-924
[3]  
Gaul L(1991)Damping description involving fractional operators Mech. Syst. Signal Process. 5 81-88
[4]  
Klein P(2009)Fixed point theorems for weakly contractive mappings in partially ordered sets Nonlinear Anal. Theory Methods Appl. 71 3403-3410
[5]  
Kemple S(2014)Infinitely many solutions for nonlinear perturbed fractional boundary value problems Ann. Univ. Craiova Math. Comput. Sci. Ser. 41 88-103
[6]  
Harjani J(2014)Multiple solutions for a nonlinear perturbed fractional boundary value problem Dyn. Syst. Appl. 23 317-332
[7]  
Sadarangani K(2017)Existence of three solutions for impulsive nonlinear fractional boundary value problems Opusc. Math. 37 281-301
[8]  
Heidarkhani S(2001)Differential equations of fractional order: methods results and problems, I Appl. Anal. 78 153-192
[9]  
Heidarkhani S(2008)Theory of fractional functional differential equations Nonlinear Anal. Theory Methods Appl. 69 3337-3343
[10]  
Heidarkhani S(2008)Basic theory of fractional differential equations Nonlinear Anal. Theory Methods Appl. 69 2677-2682