Regularity criterion for 3D nematic liquid crystal flows in terms of finite frequency parts in B˙∞,∞−1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\dot{B}_{\infty,\infty }^{-1}$\end{document}

被引:0
作者
Xiaoli Chen
Haiyan Cheng
机构
[1] Jiangxi Normal University,School of Mathematics and Statistics
关键词
Liquid crystal flow; Regularity criterion; Weak solution; 35Q35; 76D03;
D O I
10.1186/s13661-021-01500-1
中图分类号
学科分类号
摘要
In this paper, we establish the regularity criterion for the weak solution of nematic liquid crystal flows in three dimensions when the L∞(0,T;B˙∞,∞−1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L^{\infty }(0,T;\dot{B}_{\infty,\infty }^{-1})$\end{document}-norm of a suitable low frequency part of (u,∇d)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(u,\nabla d)$\end{document} is bounded by a scaling invariant constant and the initial data (u0,∇d0)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(u_{0},\nabla d_{0})$\end{document}. Our result refines the corresponding one in (Liu and Zhao in J. Math. Anal. Appl. 407:557-566, 2013) and that in (Ri in Nonlinear Anal. TMA 190:111619, 2020).
引用
收藏
相关论文
共 30 条
  • [1] Beiráo da Veiga H.(1995)A new regularity class for the Navier Stokes equations in Chin. Ann. Math. 16 407-412
  • [2] Cheskidov A.(2010)The regularity of weak solutions of the 3D Navier–Stokes equations in Arch. Ration. Mech. Anal. 195 159-169
  • [3] Shvydkoy R.(1962)Hydrostatic theory of liquid crystals Arch. Ration. Mech. Anal. 9 371-378
  • [4] Ericksen J.L.(2008)Regularity criterion to some liquid crystal models and the Landau–Lifshitz equations in Sci. China Ser. A 51 86-103
  • [5] Fan J.(2015)Regularity conditions of 3D Navier–Stokes flow in terms of large spectral components Nonlinear Anal. 116 75-84
  • [6] Guo B.(2002)The critical Sobolev inequalities in Besov spaces and regularity criterion to some semi-linear evolution equations Math. Z. 242 251-278
  • [7] Kim N.(2000)Bilinear estimates in BMO and the Navier–Stokes equations Math. Z. 235 173-194
  • [8] Kwak M.(1968)Some constitutive equations for liquid crystals Arch. Ration. Mech. Anal. 28 265-283
  • [9] Yoo M.(1989)Nonlinear theory of defects in nematic liquid crystals; phase transition and flow phenomena Commun. Pure Appl. Math. 42 789-814
  • [10] Kozono H.(2010)Liquid crystal flow in two dimensions Arch. Ration. Mech. Anal. 197 297-336