Global Homological Dimension of Radical Banach Algebras of Power Series

被引:0
作者
Yu. V. Selivanov
机构
[1] Moscow Aviation Institute (National Research University),
来源
Mathematical Notes | 2018年 / 104卷
关键词
cohomology of Banach algebras; homological dimension; radical Banach algebra of power series; strongly noncomplemented subspace; right multiplier module;
D O I
暂无
中图分类号
学科分类号
摘要
We show that the global dimension of a broad class of radical Banach algebras of power series is at least 3 and obtain applications to cohomology groups.
引用
收藏
页码:720 / 726
页数:6
相关论文
共 15 条
  • [1] Tabaldyev S. B.(2006)Additivity of homological dimensions for a class of Banach algebras Funktsional. Anal. Prilozhen. 40 93-95
  • [2] Selivanov Yu.V.(2007)Lower bounds for homological dimensions of Banach algebras Mat. Sb. 198 133-160
  • [3] Khelemskii A. Ya.(1972)Global dimension of a Banach function algebra is different from unity Funktsional. Anal. Prilozhen. 6 95-96
  • [4] Khelemskii A. Ya.(1978)Smallest values assumed by the global homological dimension of Banach function algebras Trudy Sem. Petrovsk. 3 223-242
  • [5] Pott S.(1999)An account on the global homological dimension theorem of A. Ya. Helemskii Ann. Univ. Sarav. Ser. Math. 9 155-194
  • [6] Khelemskii A. Ya.(1972)On a method for calculating and estimating the global homological dimension of Banach algebras Mat. Sb. 87 122-135
  • [7] Selivanov Yu. V.(1976)Biprojective Banach algebras, their structure, cohomologies, and connection with nuclear operators Funktsional. Anal. Prilozhen. 10 89-90
  • [8] Lykova Z. A.(1986)A lower estimate of the global homological dimension of infinite-dimensional CCR-algebras UspekhiMat. Nauk 41 197-198
  • [9] Aristov O. Yu.(1995)The global dimension theorem for non-unital and certain other separable Mat. Sb. 186 3-18
  • [10] Ghahramani F.(1998)*-algebras Proc. Edinburgh Math. Soc. (2) 41 393-406