A supercritical estimate for Bessel potentials on Lorentz spaces

被引:0
作者
You-Wei Chen
机构
[1] National Chiao Tung University,Department of Applied Mathematics
来源
Nonlinear Differential Equations and Applications NoDEA | 2021年 / 28卷
关键词
Bessel potential; Lorentz space; Fractional integration inequality; Primary 26A33; Secondary 26A16;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we give a simple proof of an estimate for Bessel potentials acting on Lorentz spaces in the supercritical exponent: let 1<p=dα-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1<p=\frac{d}{\alpha -1}$$\end{document} and 1≤q≤+∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1 \le q \le + \infty $$\end{document}. If f∈Lp,q(Rd)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f\in L^{p,q}({\mathbb {R}}^d)$$\end{document}, then there exists a constant C=C(α,d,p,q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C =C(\alpha ,d , p,q)$$\end{document} such that |gα∗f(x)-gα∗f(z)|≤C|x-z||ln(|x-z|)|+11q′‖f‖Lp,q.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \vert g_{\alpha }*f(x)- g_{\alpha }*f(z) \vert \le C \vert x-z \vert \left(|\ln (|x-z|)| +1 \right)^{\frac{1}{q'}} \Vert f \Vert _{L^{p,q}}. $$\end{document}
引用
收藏
相关论文
共 25 条
  • [1] Aronszajn N(1961)Theory of Bessel potentials I. Ann. Inst. Fourier (Grenoble) 11 385-475
  • [2] Smith KT(1980)A note on limiting cases of Sobolev embeddings and convolution inequalities Commun. Partial Differ. Equ. 5 773-789
  • [3] Brézis H(1955)Some theorems about the Riesz fractional integral Trans. Am. Math. Soc. 80 124-134
  • [4] Wainger S(1997)Opic, Bohumír: On embeddings of logarithmic Bessel potential spaces J. Funct. Anal. 146 116-150
  • [5] du Plessis N(2000)Optimality of embeddings of logarithmic Bessel potential spaces Q. J. Math. 51 185-209
  • [6] Edmunds DE(2005)Opic, Bohumír: Compact and continuous embeddings of logarithmic Bessel potential spaces Studia Math. 168 229-250
  • [7] Gurka P(2005)Optimality of embeddings of Besselpotential-type spaces into generalized Hölder spaces Publ. Mat. 49 297-327
  • [8] Edmunds DE(2005)Sharp embeddings of Besov spaces with logarithmic smoothness Rev. Mat. Complut. 18 81-110
  • [9] Gurka P(2007)Opic, Bohumír: Sharp embeddings of Besov-type spaces J. Comput. Appl. Math. 208 235-269
  • [10] Opic B(1972)On certain convolution inequalities Proc. Am. Math. Soc. 36 505-510