Spectrum of self-affine measures on the Sierpinski family

被引:0
作者
M. Megala
Srijanani Anurag Prasad
机构
[1] Indian Institute of Technology Tirupati,Department of Mathematics and Statistics
来源
Monatshefte für Mathematik | 2024年 / 204卷
关键词
Iterated function system; Self-affine measure; Spectrum; Compatible pair; Digit set; 28A80; 42C05; 46C05;
D O I
暂无
中图分类号
学科分类号
摘要
In this study, a spectrum Λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Lambda $$\end{document} for the integral Sierpinski measures μM,D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu _{M, D}$$\end{document} with the digit set D=00,10,01\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ D= \left\{ \begin{pmatrix} 0\\ 0 \end{pmatrix}, \begin{pmatrix} 1\\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}\right\} $$\end{document} is derived for a 2×2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2 \times 2$$\end{document} diagonal matrix M with entries as 3ℓ1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3\ell _1$$\end{document} and 3ℓ4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3\ell _4$$\end{document} and for off-diagonal matrix M with both the off-diagonal entries as 3ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3\ell $$\end{document} where, ℓ,ℓ1,ℓ4∈Z\{0}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell ,\ell _1,\ell _4 \in {\mathbb {Z}}{\setminus }{\{0\}}$$\end{document}. Additionally, the spectrum of μM,D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu _{M, D}$$\end{document} for a given M and a generalized digit set D is also examined. The spectrum of self-affine measures μM,D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu _{M, D}$$\end{document} on spatial Sierpinski gasket is obtained when M is diagonal matrix with entries ℓi∈2Z\{0}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _i \in 2{\mathbb {Z}}\setminus {\{0\}}$$\end{document}, sign of ℓi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _i$$\end{document}’s are same and D={0,e1,e2,e3}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D=\{0, e_1, e_2, e_3\}$$\end{document}, where ei′s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$e_i's $$\end{document} are the standard basis in R3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^3$$\end{document}. Further, the spectrum of μM,D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu _{M, D}$$\end{document} for some off-diagonal 3×3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3\times 3$$\end{document} matrices is also found.
引用
收藏
页码:157 / 169
页数:12
相关论文
共 39 条
  • [1] Hutchinson JE(1981)Fractals and self-similarity Indiana Univ. Math. J. 30 713-747
  • [2] Fuglede B(1974)Commuting self-adjoint partial differential operators and a group theoretic problem J. Funct. Anal. 16 101-121
  • [3] Matolcsi M(2005)Fuglede’s conjecture fails in dimension 4 Proc. Am. Math. Soc. 133 3021-3026
  • [4] Farkas B(2006)Tiles with no spectra in dimension 4 Math. Scand. 98 44-52
  • [5] Révész SG(2006)On Fuglede’s conjecture and the existence of universal spectra J. Fourier Anal. Appl. 12 483-494
  • [6] Farkas B(1998)Dense analytic subspaces in fractal Journal d’Analyse Mathématique 75 185-228
  • [7] Matolcsi M(2002)-spaces J. Funct. Anal. 193 409-420
  • [8] Móra P(2008)On spectral cantor measures Adv. Math. 219 554-567
  • [9] Jorgensen PE(2012)Spectral property of the Bernoulli convolutions Adv. Math. 231 1681-1693
  • [10] Pedersen S(2008)When does a Bernoulli convolution admit a spectrum? J. Funct. Anal. 255 3125-3148