Sums of singular series and primes in short intervals in algebraic number fields

被引:0
作者
Vivian Kuperberg
Brad Rodgers
Edva Roditty-Gershon
机构
[1] Stanford University,Department of Mathematics
[2] Queen’s University,Department of Mathematics and Statistics
[3] H.I.T. - Holon Institute of Technology,Department of Applied Mathematics
来源
The Ramanujan Journal | 2022年 / 58卷
关键词
Primes; Short intervals; Ramanujan sums; Singular series; Number fields; 11N05; 11R47;
D O I
暂无
中图分类号
学科分类号
摘要
Gross and Smith have put forward generalizations of Hardy–Littlewood twin prime conjectures for algebraic number fields. We estimate the behaviour of sums of a singular series that arises in these conjectures, up to lower-order terms. More exactly, where S(η)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak {S}(\eta )$$\end{document} is the singular series, we find asymptotic formulas for smoothed sums of S(η)-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak {S}(\eta )-1$$\end{document}. Based upon Gross and Smith’s conjectures, we use our result to suggest that for large enough ‘short intervals’ in an algebraic number field K, the variance of counts of prime elements in a random short interval deviates from a Cramér model prediction by a universal factor, independent of K. The conjecture over number fields generalizes a classical conjecture of Goldston and Montgomery over the integers. Numerical data are provided supporting the conjecture.
引用
收藏
页码:291 / 317
页数:26
相关论文
共 26 条
  • [1] Brandolini L(1993)Fourier transform of characteristic functions and Lebesgue constants for multiple Fourier series Colloq. Math. 65 51-59
  • [2] Castillo A(2015)Bounded gaps between primes in number fields and function fields Proc. Am. Math. Soc. 143 2841-2856
  • [3] Hall C(1976)On the distribution of primes in short intervals Mathematika 23 4-9
  • [4] Lemke Oliver RJ(1978)Primes and zeros in short intervals J. Reine Angew. Math. 303 205-220
  • [5] Pollack P(2000)A generalization of a conjecture of Hardy and Littlewood to algebraic number fields Rocky Mountain J. Math. 30 195-215
  • [6] Thompson L(1923)Some problems of ‘Partitio numerorum’; III: on the expression of a number as a sum of primes Acta Math. 44 1-70
  • [7] Gallagher PX(2013)A generalization of the Goldston-Pintz-Yildirim prime gaps result to number fields Acta Math. Hungar. 141 84-112
  • [8] Gallagher PX(2014)The variance of the number of prime polynomials in short intervals and in residue classes Int. Math. Res. Not. (IMRN) 1 259-288
  • [9] Mueller JH(1956)Generalized prime number theorem Jpn. J. Math. 26 1-42
  • [10] Gross R(2004)Primes in short intervals Commun. Math. Phys. 252 589-617